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purposes. Nowadays, there are two price benchmarks for crude oil, the Brent and the WTI
(West Texas Intermediate). In this paper, we will focus on the WTI, which is also known
as Texas light sweet (relatively low-density and low sulphur content). WTI is mainly traded
in North America, and its futures contracts are mainly traded on the New York Mercantile
Exchange (linked to the CME group). On a typical trading day about 1 million contracts are
traded at the CME, the majority being futures and 10% of contracts being options. All futures
on WTI traded on the CME have physical settlement, which means that these futures are tied
to actual delivery when they mature, and the place of settlement is Cushing, Oklahoma.

The pricing of futures and options on commodities in a modern theoretical framework has
been considered at least since Black (1976). Ramaswamy and Sundaresan (1985) extended
Black’s ideas to value American style call options on futures contracts. Further, Shastri
and Tandon (1986) suggested a way to price both American type call and put options on
the Standard and Poor 500 index and the West German Mark futures contracts. Schwartz
(1997) and Hilliard and Reis (1998) shifted the attention to the incorporation of a stochastic
convenience yield into the modeling. The convenience yield takes account of certain costs
and benefits that apply to holding the asset, and as Schwartz (1997) demonstrated, allowing
this model parameter to follow an Ornstein—Uhlenbeck process provides the model with
enough flexibility to produce a reasonable large class of shapes for the forward-curves. The
Schwartz (1997) model is typically calibrated to futures prices by using the Kalman-Filter
approach, taking account of the fact that the convenience yield and possibly the spot-price of
the commodity are not directly observable.'-? Hilliard and Reis (1998) presented a formula
that prices a European call option on a commodity in the Schwartz (1997) framework.

Our paper expands on Schwartz (1997) and Hilliard and Reis (1998) as such as that we
estimate the implied spot price and convenience yield of the underlying commodity from
options rather than futures. More specifically, we use the extended Kalman-Filter and prices
of European call options on WTTI crude oil futures to estimate the Schwartz (1997) model.
The motivation for this lies in the fact that option prices carry far more information on the
volatility structure of the underlying asset than futures do. The implied volatility smile as
well as the existence and strong use among practitioners of local and stochastic volatility
models provide plenty of evidence for this statement.

The remainder of the paper is organized as follows. The mathematical framework will
be presented in the second section, while the econometric methodology used to estimate the
model will follow in the third section. In the fourth section, the data and general assumptions
for this paper will be described in detail. Empirical results and conclusions will be discussed
in the last section.

2 Mathematical model

Let us recall from the Schwartz (1997) two-factor model that the dynamics of the commodity
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With positive correlation p = dZ;dZ;, this model generates a mean reversion effect in
spot and convenience yield. This is typically present in commodity prices and explained
in Schwartz (1997). For pricing of commodity contracts, the dynamics under the pricing
measure is relevant. Following Schwartz (1997), we have

dS/S = (r — 8)dt + o1d Z,
ds = (k(a — 8) — \dt 009701(i) 2992 32 97CS 192992
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then, it is not hard to obtain the following:
dF/F = opdZp,
where?
2 _ 2 2 2
op (01,02, p,k, T) = of + 03 H(t)* —2po102H (7).

This representation enabled Hilliard and Reis (1998) to provide an explicit expression for
the price of a European call option in Schwartz’ (1997) model:

Ct, T\, T)= P, T)H[F@, T)N(d)) — KN(d2)],

where d| = w, d>» = di — v. Here t is the current time; 7} is the time of
maturity of the call option on the futures contract; 7T is the time of maturity of the underlying
futures contract, with 77 < T'; F(¢, T) is the futures price at time ¢ for maturity at time 7’;
C(t, T, T) is the price of a call with maturity 7 on the underlying futures contract with the
maturity 7" at time ¢; P (¢, T1) is the price of a zero-coupon bond with maturity 7 and K is
the strike price of the European call option. Further v2 can be computed as:®

ek (T=T1) _ e—K(T—t):|
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For our empirical analysis it is convenient to express Hilliard and Reis’ (1998) option pricing
formula in the notation of Schwartz, as we will consider simultaneously options with different
strikes and maturities at the same time. This reflects on choosing current time ¢ = 0 at each
instance and T respectively 71 becoming the time to maturity. By doing this, we eliminate
t from the notation and obtain the following expression for the price of the European call
option above

C(S,8, T, T)= P(t, \)[F(S,8, T)N(d1) — KN(d2)],

where dy = DESSD/KIFO5 414 gy — gy . Following in the spirit of Schwartz (1997),

v
we will in the following assume that option prices are directly observable, while the state
variables S and & are hidden.” To get hold of these hidden state variables we will employ
filtering theory.

3 The extended Kalman Filter algorithm

The classical Kalman Filter algorithm requires a linear setup and is hence not applicable
to our options based framework. Instead, we will employ the extended Kalman Filter. The
principles of the Kalman Filter algorithm and the extended Kalman Filter algorithm are the
same, except that the latter involves linearization of some key functionals and approximations.

5 Compare Schwartz (1998) and Hilliard and Reis (1998).

6 : : ) _ h 2 Tiop 1 _ —k(T—w)\12,7,, _ (11 20000p 4 _
Solving the integrals: v=(r, T1, T) = [/ 'oydw + [/ '[F2(1 —e Nedw — [ 228 (1

e~ *T=w))dy), v can be calculated.

7 Alternative assumptions on observability and its effects on calibration are discussed in Ewald et al. (2017).
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Before discussing the extended Kalman Filter, in order to introduce some notations, the
basic principles behind filtering technology are explained in the following: Using Bayes
theory, filters can use the information about current observations to predict the values of
unobservable variables at the current time point, and then update the information and forecast
the situation at the next time point (compare Pasricha 2006).

To be more specific, the process of filtering can be described as follows: In a state space
model, we consider two parts, the state variable x; fork = 1,2, ..., K and the observations
afork=1,2,... K, where K is the count of the observations of the time variable. Both
afe possibly multi-dimensional. Normally, progression is determined by the state dynamics,
X = fr(xk—1, vx), where x; and x;_; are the respective states at time points k and k — 1
and vy, is the noise effecting the dynamics. Then xy is following a first-order Markov process
and x; | xg—1 ~ Pxgy_ Xk | xk—1). The relationship between state variable(s) and the
observations can be described as , g = A (xg, 1), where xi is the state variable(s) and ny is
the measurement noise at time k.

We denote with _: « the history of observations from the start of the time series until time
k. We assume that thie observations are conditionally independently given x;. For k > 1 the
expression p(xr | xx—1) presents the state transition probability. Essentially, the recursive
filter consist of two steps: The first step is referred to as the prediction step, while the second
step is called the update step. Schematically this comes down to

p(xk—1 | N k—1) = p(xg | - x—1) prediction step
P | N k=1, N e PO | N k) update step.
As for the prediction step, assume the probability density function p(xg—1 | _g:k—1) is

available at time point k — 1, using the Chapman—Kolmogorov equation, the prior pfobability
of the state at time k can be expressed as:

pxx | N k—1) = /P(Xk | Xk—1)p(xk—1 | N k—1)dXk—1.
For the update step, the posterior probability density function is

Plal X)) pCxe | g k—1)
P(Jz | N k—1)

p(xy | N k) =
where
P(‘QI N k1) = /P(Jz | x1) p(xk | N k—1)dxg.

The classical Kalman filter requires the state transition function as well as the measurement
function to be linear and the noise terms to be normal distributed. Only in this case, predic-
tion and update steps reflect conditional expectations and variances only. In the case of the
extended Kalman filter, a local linearization of the aforementioned equations is carried out
and the relevant conditional densities p(xg—1 | _g: k1), P(Xk | _j: k—1) and p(xy | % k) are
approximated by normal densities as follows: <

PXk—1 | g k=1) & N(Xk—1; Mp—1jk=1, Pr—1jk=1),
p(xg | N k—1) = N Qo migk—1, Prg—1),
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where my_x—1 respectively myx—1 and Py_ijx—1 respectively Pyx—1 refle

rpectations
and variances of the relevant conditional distributions in approximation. We

p (x| N k) ~ N (Cex; migke, Prk)
Mmik—1 = fe(mr—1k—1)
- ~T
Prii—1 = Qr—1 + Fr Pr—1jk—1 F

Mk = Mijk—1 + K (‘14. — hx(mgk—1)),
as well as

Prik = Prjg—1 — Kqu;Puk—l = - Kkil\k)Pk\k—ly
where

~T [~ —~T —1
Ky = Prji—1 Hy (HkPklk—]Hk +Rk)

is known as gain, and

I’T;( _ dfi(x)
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Table 1 The estimated parameters

Parameters K o A o1 02 P
K=975 0.8584 0.0661 0.0738 0.2593 0.4791 0.7642
K =100 0.8135 0.0557 0.0537 0.2624 0.4818 0.7582
K =102.5 0.7863 0.0821 0.0621 0.2713 0.5041 0.7687
Futures 0.7031 0.0259 0.0497 0.5592 0.1645 0.5189

2015, respectively. Prices for the corresponding futures are collected at the same time. The
risk free rate has been obtained from treasury notes® maturing in the same months as the
options, i.e. April 2014, May 2014, Aug 2014, Nov 2014, and March 2015, respectively.9

5 Empirical results and conclusion

Estimated parameters from the various European calls are shown in Table 1. Overall, the
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Fig. 1 Estimated spot price from estimated spot prices
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Fig. 2 Estimated convenience yield from calls and futures contracts

classical Kalman Filter. The convenience yields corresponding to the three different strikes
are all relatively closely aligned, fluctuating between 0 and about 0.3. Convenience yields
corresponding to lower strikes appear to be slightly elevated. Prominently, at the beginning of
the sample period the estimated convenience yields based on strikes K = 100and K = 102.5
drop to about 0, while this peg does not appear in the call with strike K = 97.5. As for the
estimated spot, the convenience yield obtained from the associated futures prices differs
markedly, showing less extreme movements and less fluctuation.

Figures 3, 4, and 5 show the term structures of the European calls, i.e. prices for increasing
maturities, at different dates during the sample period. In all three pictures, the horizontal
axis represents the number of months to maturity and the vertical axis represents the prices
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forward curve of calls price at 50th testing day
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Fig. 3 The term structures of the European calls at 50th testing day
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Fig. 4 The term structures of the European calls at 100th testing day

of the calls. As shown in the figures, the dotted lines represent the model-estimated prices
corresponding to different calls based on different strike prices, where model calibration
has been undertaken via the extended Kalman filter and option data as described earlier.
The solid lines represent the observed prices corresponding to the different calls based on
different strike prices. It is not hard to observe that the model-estimated prices are close
to the observed prices of the calls in all three cases, whatever the strike prices are, the fit is
excellent. However, in addition to these, the lines with plus signs lying far above the observed
option prices represent the model prices obtained from the Schwartz (1997) model, calibrated
to observed futures prices via the classical Kalman filter. As can be seen very clearly, this
calibration performs poorly, providing clear evidence, that if the main objective is to price
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forward curve of calls prices at 200th testing day
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Fig. 5 The term structures of the European calls at 200th testing day

model call K=97.5

[ — — Aqrantd. modetipince ]
— — Aug2014 model price
Mar2015 model price
—— A i

Fig. 6 The observed and model prices of European calls with the strike price of K = 97.5

options in the Schwartz (1997) model, then the approach presented in our paper should be
followed, rather than the standard Schwartz (1997) approach.

Figures 6, 7 and 8 show model and observed prices over the sample period for nine calls
maturing in April 2014, August 2014 and March 2015 with strike prices K = 97.5, K = 100
and K = 102.5. As can be seen, fit is excellent, except towards the end of the sample period
for the option maturing in March 2015.

Figure 9 shows that all four parameter sets, i.e. those from three options with strikes
K =975, K = 100, and K = 102.5 as well as from the underlying futures contracts,
produce a very good fit for pricing futures contracts.
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Fig.7 The observed and model prices of European calls with the strike price of K = 100
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Fig. 8 The observed and model prices of European calls with the strike price of K = 102.5
6 Conclusions

Using the extended Kalman filter, we have estimated the Schwartz (1997) two-factor model
by means of historical prices for options with differing maturities and strikes. We found that
some parameter estimates significantly differ from those obtained via the classical Schwartz
(1997) approach, which involves using the classical Kalman filter and futures prices. We
then demonstrated, that while the parameter sets obtained from the options are also able to
provide a good fit when pricing futures, the opposite does not hold. Using the parameters
obtained via the classical Schwartz (1997) approach to price options produces a significantly
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- observed and model prices of futures
T T T T T

Fig. 9 The observed futures prices and the model-estimated futures prices based on the different strike prices
of European style calls

poorer fit than our approach. Hence, when the objective is to price both futures and options
simultaneously within the Schwartz (1997) framework, our recommendation is to fit the
model to options rather than futures by using the extended Kalman filter.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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provide a link to the Creative Commons license, and indicate if changes were made.

References

Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3, 167-179.

Chen, J., & Ewald, C.-O. (2017). Pricing commodity futures options in the Schwartz multi factor model with
stochastic volatility: An asymptotic method. International Review of Financial Analysis, 52, 144—151.
https://doi.org/10.1016/j.irfa.2017.05.002.

Ewald, C. O., Zhang, A., & Zong, Z. (2017). On the consistency of two benchmark approaches to calibrate
the Schwart_g1997) two-factor model for commodity futures, working paper.

Harvey, A. C. (1989). Forecasting structural time series models and the Kalman filter. Cambridge: Cambridge
University Press.

Hilliard, J. E., & Reis, J. (1998). Valuation of commodity futures and options under stochastic convenience
yields, interest rates and jump diffusion in the spot. The Journal of Financial and Quantitative Analysis,
33(1), 61-86.

Pasricha, G. K. (2006). Kalman Filter and its economic applications. University of California, Santa Cruz,
CA 95064. http://mpra.ub.uni-muenchen.de/22734/.

Ramaswamy, K., & Sundaresan, S. M. (1985). The valuation of option on futures contracts. Journal of Finance,
40(5), 1319-1340.

Schwartz, E. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging.
The Journal of Finance, 52(3), 923-973.

Schwartz, E. (1998). Valuing long-term commodity assets. Financial Management, 27(1), 57-66.

Shastri, K., & Tandon, K. (1986). An empirical test of a valuation model for American options on futures
contracts. Journal of Financial and Quantitative Analysis, 21(4), 377-392.

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.irfa.2017.05.002
http://mpra.ub.uni-muenchen.de/22734/

	On the calibration of the Schwartz two-factor model to WTI crude oil options and the extended Kalman Filter
	Abstract
	1 Introduction
	2 Mathematical model
	3 The extended Kalman Filter algorithm
	4 Data and assumptions
	5 Empirical results and conclusion
	6 Conclusions
	References




