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Optimal Long-Term Contracting with Learning

investing in companies with new technologies or firms hiring fresh graduates.
Unfortunately, for reasons stated later, the study of long-term contracting with
learning is challenging.

We introduce uncertainty and learning into the classic Holmstrom and
Milgrom (I | §§ i) model with a constant absolute risk aversion (CARA) agent.
We choose IHles_tanan_d_y[ﬂ,gmni (1987) for two reasons. First, the
m (@‘) model has a tractable dynamic CARA-normal
framework that nicely accommodates learning, and we consider an infinite-
horizon variation of [Holmstrom and Milgromd (1987) with stationary learnin
to maintain tractability. Second, against them )
benchmark in which the optimal contract is linear, we show that uncertainty and
learning make the optimal compensation contract option-like; that is, incentives
rise following good performance.

In our model the principal signs a long-term contract with the agent, with
commitment by both parties. The observable output each period is the sum
of the agent’s unobservable effort, the project’s unknown profitability (or the
agent’s unknown ability), and some transitory noise. To focus on learning only
(rather than adverse selection), we assume that both the principal and agent
share a common prior on the project’s profitability when signing the long-term
contract.

Unlike [Holmstrom and Milgroml (1987), incentive provisions become
intertemporally linked over time because of learning. The intertemporal linkage
of incentive provisions is rooted in the hidden information problemEl Along
the equilibrium path, the principal knows as much as the agent knows, because
both start with the common prior. However, along off-equilibrium paths, the
agent strictly knows more, because only the agent knows how much actual
efforts deviate from the recommended level of effor. Specifically, imagine that
the agent has followed the recommended effort policy in the past; thus both
parties share the same correct belief about the project’s profitability. If the
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In solving the optimal contract with learning, we need the information rent
as the second state variable, in addition to the agent’s continuation value. The
information rent captures the marginal benefit of the agent’s shirking due to the
belief manipulation effect, and hence enters the agent’s incentive compatibility
constraint. The higher the future incentives (i.e., pay—performance sensitivity),
the greater the information rent, and the lower the agent’s current motivation to
expend effort. We show that the information rent can be conveniently expressed
as the sum of properly discounted future incentives, and the agent’s optimal
effort is simply the instantaneous incentive minus the information rent due to
the belief manipulation effect. Thanks to the CARA preference that has no
wealth effect, the agent’s continuation value separates from the problem, and
the optimal contract is fully characterized by an ordinary differential equation
(ODE) with the information rent as the only state variable. Although we use
the first-order approach to solve for the optimal contract, we verify the validity
of the first-order approach in Section 3.4] by identifying an upper bound of
the agent’s deviation value. Section B3] discusses how CARA preferences and
private savings render the tractability in our model.

Relative to the existing literature of long-term contracting with learning,
which focuses on implementing a constant first-best effort (DeMarzo and
Sanmikon 2P st T T oo paper hghlihts two intresing
features in the optimal contract. First, in our model the optimal effort policy,
which is always distorted downward relative to the first-best benchmark, has a
negative drift, thus exhibiting a front-loaded or time-decreasing pattern. This
is somewhat surprising. We have explained that under a given contract the
information rent makes the agent want to work less in earlier periods, and
casual readers might conclude that in the optimal contract the agent should
work less earlier. However, the opposite holds in the optimal contract: The
principal will purposefully give higher incentives early on so that the agent
works harder in earlier periods in equilibrium.

In Section L] we solve in closed form the optimal deterministic contract
(i.e., the optimal one among the contracts in the subspace that implements
deterministic but time-varying incentives only), and show analytically that
the optimal deterministic effort policy decreases over time. This pattern
holds in the optimal stochastic contract, and the intuition is a result of the
belief manipulation effect. As mentioned, later incentives increase the agent’s
current information rent for shirking. This implies that future pay—performance
sensitivities impair the agent’s motivation for expending effort in earlier
periods, but not the other way around. Given that later incentives are more
costly, the optimal contract implements less effort in later periodsH

Interestingly, the pattern of time-decreasing effort policy in our paper with post-contracting information
asymmetry is opposite of the dynamic contracting setting with pre-contracting asymmetric information in Garrett
and Pavan Q017). In that paper, under the assumptions that the agent privately observes his productivity at
the time of signing the contract and that the effect of initial productivity on future productivity is declining
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Second, the optimal contract is stochastic with higher incentives after good
performance, exhibiting an option-like feature [l The intuition is the result of
reducing the agent’s belief manipulation in a long-term relationship. For a
risk-averse agent, the amount of information rent not only depends on the
benefits of belief manipulation that increase with future pay—performance
sensitivities, but also the agent’s marginal utility at future states when receiving
those benefits. Raising incentives after good performance introduces a negative
correlation between pay-for-performance and marginal utility. That is, greater
future benefits from belief manipulation are associated with the states when
the agent cares less. Hence, the option-like compensation contract lowers the
agent’s information rent standing today.

The combination of long-term contracting and learning that drives front-
loaded and option-like incentives. On the one hand, with long-term contracting
but no learning, the model is a simple extension of [Holmstrom and Milgron

) and a constant effort policy is optimal (Section B3). On the other
hand, with learning but short-term contracting, the absence of commitment
due to the nature of short-term contracting relationships implies that principals
at different times will not take the aforementioned belief manipulation effect
into account. In that case, similar to [Holmstrom dlﬂgg), the Gaussian setting
with stationary Bayesian learning gives rise to a constant effort process in
equilibrium (Section 4.

We rely on specific assumptions (i.e., CARA preferences, private savings,
stationary Gaussian setting) to fully characterize the optimal long-term contract
with learning. However, the economic forces that are driving our main results
do not depend on CARA preferences or Gaussian processes. First, in any long-
term contracting environment with learning, it is generally true that the agent
obtains information rent due to belief manipulation, which captures his desire
to shirk so as to distort the principal’s future belief downward. This result
implies that later incentives enter the agent’s forward-looking information rent
in earlier periods (but not the other way around). Consequently, later incentives
are more costly than earlier ones, giving rise to the time-decreasing effort policy.
Second, the option-like feature relies solely on the concavity of the agent’s
utility function, so that the marginal value of earning future (potential) belief
manipulation benefitis lower for the agent after good performance; hence higher

over time, the optimal effort policy is time-increasing. Intuitively, in [Garrett and Pavad @013), the downward
distortion required for rent extraction is more severe in earlier periods when the major friction is pre-contracting
private information. It is intriguing that pre-contracting private information and post-contracting information have
opposite predictions for the time-series pattern of effort distortion, but the difference in[Garrett and Pavad @012)
also lies in the agent being risk neutral without wealth constraint. Relatedly, [Sanniko\ @0T4) allows the agent’s
current effort to affect future fundamental, and [Marinovic and Varad @01d) study the optimal contract when the
agent can engage in manipulation to boost short-term performance, but with negative long-term consequences.

That effort policy is history-dependent is surprising given our setting. With a standard CARA-normal setting
and learning, as the posterior variance only changes deterministically over time (in our stationary setting, it is
a constant), the resultant equilibrium effort profile is usually deterministic (e.g., [Gibbons and Murphyl ;

[[999). In contrast, in our model with learning, the optimal long-term contract has an option-like
feature in that pay—for—performance rises following good performance.
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compensation. Since these economic forces are fairly general, our two main
qualitative results—front-loaded effort policy and option-like compensation—are
likely robust to other more general settings.

Our model offers some interesting empirical implications. In particular, it
provides a mechanism that demonstrates why option-like payoffs are desirable
in managerial compensation. In practice the use of option-based compensation
is no doubt pervasiveﬂ Interestingly, traditional static models typically do not
predict option grantsﬁ For example, [Dittmann and Maug (2007) calibrate a
standard static structural model and find that most CEOs should hold more
straight equity, hold no stock options, and receive lower salaries. The option-
like features of the optimal contract in our paper shed light on the “2-20” and
high-water-mark contracts that are widely used in the hedge fund industry. As
shown in our paper, that hedge fund contracts exhibit option-like features may
well be due to learning about persistent unobservable managerial ability as
well as the commitment associated with long-term contracting in the hedge
fund industry. In addition, our model also predicts that industries with higher
uncertainty should grant more stock options to their managers. The latter cross-
sectional prediction is consistent with the evidence in Ittner, Lambert, and
Larcker 1|éﬂi!i) and |&111EEE§ (lE!)ﬂa), who document more extensive use of
stock options in new-economy firms (e.g., computer-related firms).

Our paper _is closest to [DeMarzo and Sannikow (2017) and Prat and
Jovanovic (2014). As mentioned earlier, both papers deal with long-lasting
belief manipulation effect in dynamic agency settings with learning, but restrict
attention to the optimal contract that implements a constant first-best level of
effort.[Prat and Jovanovid (2014) focus on the role of intertemporal commitment
in optimal contracting. [DeMarzo and Sannikoy 2017) impose limited liability
constraint on the agent and study the optimal payout and termination policies.
In contrast, we solve for the optimal effort policy jointly with the optimal long-
term compensation contract and emphasize the general economic mechanisms
that shape the optimal effort policy in long-term optimal contracting. As
discussed previously, the two main results of our optimal contract, that is, front-
loaded effort policy and option-like incentives, cannot hold in the contracting
space with constant effort policy.

The long-lasting belief manipulation in dynamic contracting also exists in

Mﬁt}mmmmmmm Bergemann
and Hege ( ), an agent keeps working on a project which may succeed with

some probability depending on its quality, and the game ends once the project

[Hall and Liebmad (1999), for example, show a large increase in the use of stock options in CEO compensation
for incentive provisions.

There are a few exceptions in a dynamic framework. For instance, [Edmans and Gabaid @0T1)) show that the
convexity of the contract depends on the marginal cost of effort. In[and Wad @0713), stock options become
optimal when the agent has to be paid above a certain subsistence level.
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succeeds[ The project quality and the agent’s effort affect the project success in
a multiplicative way, that is, success may occur only if the project is good and
the agent is working. In contrast, our model features an additive production
function in which the marginal productivity of effort is independent of the
project quality.

The topic of optimal contracting with endogenous learning also relates to the
recent literature studying optimal long-term contracts with adverse selection

and moral hazard (c.g.,[Baron and Besankd|1984; Is».nélzoml ;1SannikodR00T:
Iﬁamen_and_Eazad Iﬁ m} Ro1d
Ro1d: M). In general, when the agent has pre-

contractmg prlvate 1nformat10n that is persistent, a mechanism design approach

naturally WWGO]OSOV Troshkin, and
Tsyvinski )1 However, because our paper focuses on the problem without
pre-contracting private information, we do not need to solve for the optimal
menu for the agent’s truthful reporting when signing the contract.

1. Model

[=

N

1.1 Setting

Consider a continuous-time infinite-horizon principal-agent model with a
common constant discount rate r > 0. The project generates a cumulative output
Y; up to time ¢, which evolves according to

dY,=(u,+6,)dt+odB,, (1)

where {B;} is a standard Brownian motion on a complete probability space
(£2,F,P), u; is the agent’s unobservable effort level, 6, is the project’s
profitability, and the constant o >0 is the volatility of cash flows. Moral
hazard arises from the agent’s unobservable effort choice, which affects the
instantaneous cash-flow dY;.

This assumption is crucial for the tractability of IB d (I999). It is worth noting that the “real
option” mentioned in the abstract of m {099 is different from our result. In our paper,
“option-like incentives” refer to the fact that incentives rise after good performance; but in their paper the game
ends after any good performance (i.e., project success).

Other papers that are related to learning but do not deal with the belief manipulation effect.|Adrian and Westerfield
{00d) focus on the disagreement between the principal and the agent about the agent’s ability, where the agent
is dogmatic about his belief (i.e., the agent never updates his posterior belief about profitability from past
performance), which eliminates the belief manipulation effect. In that paper, although the agent could distort the
principal’s belief by shirking, the dogmatic agent (who does not realize that the firm’s profitability is, in fact,
higher than that perceived by the principal) will not gain anything from this channel, and as a result there is no
belief manipulation effect. More recently, [Cosimano. Speight. and Yud (Z011)) study the long-term contracting
problem with binary unobservable productivity states, and show that the optimal contract tends to be sticky.
They assume that the agent’s effort is observable but not contractible, and hence both the principal and the agent
always have the same information set, on both equilibrium and off-equilibrium paths.

[Pavan_Segall and Toikkd @0T4) and [Golosov. TroshKin. and Tsyvinskd @013) use the first-order approach to
solve the agent’s problem. This is the same approach used in [Williamd @009, BOTT) and Zhand ©009), who
study persistent information in a continuous-time principal-agent setting. We also use the first-order approach to
solve the agent’s problem and verify the validity of the first-order approach in SectionZ4]
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The risk-neutral principal (hereinafter she) offers the CARA agent
(hereinafter he) a contract {c;, u;}, so that the agent is recommended to take
the effort policy u={u,} and is compensated by the wage process c={c;}.
Both elements are measurable to ), =F{Y,:0<s <t}, which is the filtration
generated by the output history. Both parties can commit to the long-term
relationship at r =0, at which point the agent has no personal wealth and has an
exogenous reservation utility of vy. Without loss of generality, we assume the
principal has all the bargaining power.

Relative to [Holmstrom and Milgroml (1987), we introduce the project’s
unknown profitability 6, into the output process in Equation (). Equivalently,
one can interpret 6, as the agent’s unknown ability. We assume that profitability
{6,} follows a martingale process so that

db,=podB?,

where the Brownian motion {B?} is independent of {B}, and ¢>0 is a
constant. At time 0, the principal and the agent share the common normal
prior: y~N (mo, Eg ) We mainly focus on stationary learning; we discuss
nonstationary learning for robustness checks in the Internet Appendix. For
learning to be stationary, the prior uncertainty is assumed to satisfy Eg =0’¢,
so that the posterior variance £¢ = 28 for all # and Bayesian updating is time
independent. When ¢ =0, our model features no uncertainty (or, 6, is perfectly
observable? and thus is reduced to the benchmark model of Holmstrom and
Milgrom ), as analyzed in Section B3]

We further assume that the agent can privately save (i.e., hidden savings, or
consumption is not contractible) to smooth his consumption intertemporally,
if he wishes. CARA preferences do not have a wealth effect, and the issue
of private savings can be easily dealt with (e.g., Fudenberg, Holmstrom, and
Milgrom ; (Williams ; [Hd ). In Section[3.3] we explain the reason
why the agent’s ability to smooth his own consumption renders extra tractability
for this model.

Private savings imply that the agent’s actual consumption can differ from
wage ¢;. The agent’s actual consumption is represented by ¢; and actual effort
by 1i;; then the agent with a CARA preference (exponential utility) has an
instantaneous utility of

— 1 - -
u(ct,m)=—;eXp[—a(cf —g ()],

where a > 0 is the agent’s absolute risk-aversion coefficient, and g (i1;) = %;’le is
the instantaneous quadratic monetary cost of exerting effort 1z, The quadratic
form of g(-) simplifies our results, but our analysis holds as long as g(-) is
strictly increasing and strictly convex.

In the tradition of [Holmstrom and Milgron] (I987), the CARA preference allows for negative consumption; that
is, both ¢; and ¢; can take negative values. In contrast, in[DeMarzo and Sannikod @017) the agent is protected
by limited liabilities, and hence the endogenous contract termination arises. It is unclear how the limited-liability
restriction affects the qualitative results of our paper.
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1.2 Bayesian learning and effort
Recall that at time 0, the principal and the agent share the common normal
prior 6~ N (mg, £{) . From now on we normalize mo=0. Both parties update
their beliefs based on their own respective information sets. Recall that
Vi=F{Y;:0<s <t} is the augmented filtration generated by output path
Y. Given any contract {c;,u,}, the principal’s information set at time 7 is
F{Ys, s :0<s <t}, as the principal knows the recommended effort policy
w={pn,}. However, the agent’s information set also includes his actual effort
policy mw={u,}, that is, F{Y;, s, s :0<s <t}. Intuitively, relative to the
principal, the agent knows (weakly) more because he knows his actual past
effort choices 1, which may deviate from the recommended policy w. This
distinction is important for our analysis.

If the agent follows the recommended effort policy w, the principal’s
posterior belief about 6, is correct and fully summarized by the first two
moments:

L 2
=E[6,%, 1] and 5" =E[ (6, —mt)* 19,1t ]
Astandard ﬁltenng argument (e.g., Theorem 12.2 1n|]_4,pLs_e_r_a.n_¢Sh1r¥aﬂ" 1977)

implies that E " =02¢ for all t (due to the stationary assumption Eo =0’¢),
and

dyY, — (,U,, +m; )dt

0,
dm! =%, 5

=o¢d B! with my=0, ()

o

where B! is a standard Brownian motion under the measure induced by the
effort policy u:
dY, — (u+m}')dt

o

dB!'= (3)

Conditional on the actual effort policy {/i;}, the agent forms his posterior
belief as

=E[6/|Y,, /7] and z“—ﬂ«:[( wf) v ]

The superscript i1 emphasizes the dependence on the agent s actual effort policy
1t (which the principal does not know). Similarly, ;" =o2¢ for all ¢, and

dY,— (ﬁ,+m?)dz

dmP =5/ . =o¢dBl", with mo=0, )

o

where B! is a standard Brownian motion under the measure induced by the
actual effort policy &:

dy, — (ﬁ,m?)d;

o

dB" (5)
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1.3 Formulating the optimal contracting problem

We first state the agent’s problem. S, denotes the balance of the agent’s savings
account, which earns interest at the constant rate r > 0. Given the contract
{cs, s} the agent’s problem is

maxE} [ f e—”u@,ﬁadr} ©)
{c.iz} 0

st dY,= (ﬁ,m?) dt+odBl,

dS;=rS,dt+c,dt —c,dr with Sp=0,

with the transversality condition, say the saving balance S, has to be
bounded [ Here, E”[-] denotes the expectation under the probability measure
induced by the actual effort policy {{i,}, and {c;} is the actual consumption
policy. Denote the optimal solution to Problem @) by {c}, uu}.

We call the contract {c;, u;} incentive-compatible and no-savings if, given
the contract {c;, u;}, the solution to the agent’s problem in Equation (@) is
cy=c, and uy=pu,, which further implies §;=0 for any ¢ (i.e., no private
savings at any time). In other words, the agent finds it optimal to consume
his wages and work as recommended. As a standard result in the literature,
the following lemma shows that there is no loss of generality by restricting
attention to incentive-compatible and no-savings contracts. The idea is similar
to the revelation principle. Once the principal knows the agent’s actual effort
policy, she will perform correct Bayesian updating based on that policy; and
since the principal can fully commit to the contract, she can save for the agent.
Note, the optimal no-savings contract also can be implemented by some other
compensation scheme in which the agent saves for himself.

Lemma 1. It is without loss of generality to focus on contracts that are
incentive-compatible and no-savings.

Proof. The Appendix provides all proofs. n

The optimal contract solves the principal’s problem:

00
max Ey e " dY,—cdt) |, (7
{cr,pt )} is incentive-compatible and no-savings 0

so that dY, = (u;+m;')dt+odB/", and

Eqy [/we”u(c,,,u,)dt] =vp. (8)
0

In Appendix A.3, we explicitly impose the assumption of private savings being bounded in Assumption 1 in the
proof of Proposition[Il
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Equation () is the agent’s participation constraint at =0 for the agent with
a reservation value vy. Since negative transfers are allowed, this participation
constraint at £ =0 must bind.

2. The Agent’s Problem

In this section we illustrate heuristically the necessary conditions for a contract
{c/, 1/} to be incentive-compatible and no-savings.

2.1 Continuation value and incentives

Given the incentive-compatible and no-savings contract {c,, 1.}, the agent’s
continuation value, which is his expected payoff from the continuation contract,
is defined as:

o0
v, =E/ |:/ e’(S’)u(cs,,ux)ds:|. 9)
t

According to the standard martingale representation argument (e.g., Sannikov,
2008), there exists some progressively measurable process {f;} so that

dv,=rv,dt —u(c,,,u,)dt+,3,(—arv,)(dY, — . dt —mﬁ’“dt) (10)
=rvdt —u(c,, u;)dt +B,(—arv,)odBl".

We can interpret B, as the dollar incentive on the agent’s unexpected
performance. From (M), we know that B;(—arv;) can be
interpreted as the incentive loading—measured in the agent’s utilities—on his
unexpected performance dY; —m! dt. We show shortly that (—arv,)> 0 is the
agent’s marginal utility from consumption at time ¢, that is, u.(c;, i4s). As a
result, dividing utility incentives 8; (—arv,) by the marginal utility yields dollar
incentives received by the agent. This is important for model tractability: As we
show later in Section 2.4.1, using dollar incentives allows us to cancel (—arv,)
and derive a simple expression for the agent’s incentive compatibility condition
that is independent of his continuation value v,.

Later, we simply refer to pay—performance sensitivities {f;} as incentives.
Throughout the paper, we impose a further technical condition for ease of our
analysis. Essentially, we restrict the feasible incentive slopes { 8;} to be bounded,
that is, some sufficiently large constant M exists such that g, € [—M, M]. This
assumption ensures that the endogenous state variable in the problem, the
expected (properly) discounted future incentives, is bounded for any feasible
contracts. Later, we will show that, given this restriction, the optimal incentives
are independent of the exogenous bound M

This boundedness assumption shares the same spirit as imposing a transversality condition. For instance, in the
standard consumption-portfolio problem, to rule out Ponzi schemes, one often imposes the agent’s wealth being
bounded from below. In that context, the optimal portfolio strategy is also independent of the lower bound for
the agent’s wealth.
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2.2 No savings
Followingm M), we first show that the no-savings condition under CARA
preferences implies that

1
rvp=ulcr, ) =——expl—ale; =g ()l an
We have the following lemma for any compensation contract, I1.

Lemma 2. At any time ¢>0, consider a deviating agent who has some
arbitrary savings S and faces the continuation contract I1,. v;(S; IT) denotes
the deviation continuation value. We have

v (S =0, (0; )¢~ =, -7, (12)
where we have used the fact that v, (0; IT) is the agent’s continuation value v,
along the no-savings path defined in Equation (3).

The driving force behind this result is simple. Due to CARA preferences, the
agent’s problem is translation-invariant with respect to his underlying wealth
level, as evident by u(cs+rS, js)=e~“Su(cy, iy). Thus, for a CARA agent,
given the extra savings S, his new optimal deviation policy is to take the
optimal consumption-effort-learning policy without savings—which explains
v, in Equation (I2), and to consume an extra S more uniformly across all
future dates/states—which explains the adjusting factor %S in Equation ([I2).

The optimality of the agent’s consumption-savings policy implies that his
marginal utility from consumption must equal his marginal value of wealth.
Equation (I2)) then implies that:

v (S; ) due to (2
9 5=0 -
Equation () follows immediately from Equation (I3) because under CARA

preferences, the agent’s utility level is linear in his marginal utility:

au(es, o) =—uc(Cr, fhe). (14)
Once we have established the key result in (II)), we can plug it back into
Equation (IQ), and find that v, follows an (exponential) martingale:

dv;=B;(—arv,)odB!" & v,

s 1 s
:v,exp(—/ ar,B,,adB,ﬁ‘—E/ azrzﬁ,fazdu> fors>tB (15)
t

1

uc(cr, )= —arv;. (13)

Intuitively, a good performance dB} = al (dY, — w,dt —my'dr) for uelt,s]
increases v, (recall v, <0 for CARA preferences), all else being equal. That
vy/v; only depends on incentives {B,},,<, is key to tractability for later

analysis.

Because |8| < M is bounded, the local martingale {v;} is indeed a martingale. This result can also be understood
by combining two observations: First, the agent can smooth out his consumption intertemporally, and hence his
marginal utility has to follow a martingale. Second, his continuation value v; is linear in his marginal utility u.
because of Equations (I3) and (Id).
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2.3 Effort and belief distortion

The difficulty of introducing learning into the dynamic moral hazard problem
is not learning per se. Rather, the challenge is to deal with the issue of belief
manipulation: the agent, simply by shirking from the recommended effort today,
can distort the principal’s future beliefs about project profitability downward.

Consider the following thought experiment. Suppose that at time ¢ the agent
exerts an effort level 1, below the recommended effort u,, and thus output is
lower than what is expected by the principal on average. Crucially, however,
the principal thinks the agent is exerting an effort of p,—thus she (through
learning) mistakenly attributes lower output to a lower value of profitability 6,.
In contrast, the agent updates profitability 6, based on his true effort level 1i;,
leading to a positive wedge m? —mﬁ‘ =E[6,1),,u]1—E[6;]);, n] between the
beliefs of the agent and principal. In other words, by shirking, the agent makes
the principal (mistakenly) underestimate profitability. This belief manipulation
is beneficial to the agent in a dynamic setting—when future outputs turn out
to be high, the agent gets rewarded for high profitability (based on the agent’s
correct information set) rather than his effort.

The above logic implies that any current effort deviation has a long-lasting
effect in distorting the principal’s belief, and we now formalize this effect.
When the agent deviates from the recommended effort path {1} by choosing
effort policy {{t}, the principal’s belief about 8; for s > 7 is distorted downward.
This distortion, represented by Ay, has the following intuitive expression:

Ag=mf—m!'=¢ / e, — i )du (16)
0

Intuitively, the current belief distortion at time s equals the agent’s cumulative
effort deviations in the past u € [0, 5], with a discount factor of ¢. When ¢ =0,
the zero prior uncertainty £ =02¢=0 eliminates any belief divergence, and
the issue of belief manipulation is absent.

Figure[Mheuristically illustrates the long-lasting belief distortion effect for a
one-time effort deviation. The left panel shows that the solid line, which is the
agent’s actual effort {1}, lies below the dashed line, which is the recommended
effort {u}, only at time interval [z,¢+dt], for some ¢. Let us say ;= u; —¢,
and for illustration we have assumed that {u} takes a constant value. The right
panel shows that this one-shot deviation triggers a long-lasting belief distortion
with a decaying factor ¢:

Ag=ml —mt =¢.pe~ " dt for s > 1. (17)

According to Equations @) and @, we have:
dA; :dm;‘ —dm;i:d)(d}’, — (ﬂ,+mﬁ')dl) —¢(d)’t - (;L, +m¢t)dr) =¢(ur — iy — Ay)dt,

which leads to the expression of A; in {[3). Here, we have used A(=0, as both parties share the common prior
when signing the contract.
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Figure 1
Long-lasting belief distortion (right) due to a one-time effort deviation (left). For illustration, we assume s, takes
a constant value. The agent shirks at [s,s+ds] so that [is =5 —¢; this triggers a long-lasting belief distortion

At =m;L 7me =5~¢e‘¢(’_5) so that the agent knows that the project is better than the principal thought (in

off-equilibrium path).

Intuitively, as new information flows in, this belief divergence persists but
decays over time exponentially at the rate of ¢. As a result, even at time s > 7,
the principal mistakenly thinks the project is of a worse quality than the agent
thinks.

As suggested by Equation (I0), the contract relies on the agent’s
“unexpected” performance along the equilibrium path d Y, — (/LS +mb ) ds.This
equals od B! under the equilibrium measure and has a mean of zero. For the
agent who deviates by exerting 11 #u, under his information set the above
“unexpected” performance no longer has zero mean. Suppose that the agent
has deviated before s so that [, #u, where 7 <s. Even if the agent exerts the
same effort at time s so that u, =71, Equation (@) implies that

dYs— (@, +mP)ds=dY, — (u,+m?)ds (18)
has zero mean under the agent’s information set. Hence, the “unexpected”
performance d YS—(/J,S+m§‘ )ds displays a positive drift under the agent’s

information set:

— MY s = _ n
dyY; (/Ls+ms)ds [dYS (,us+ms)ds] +  Agds

zero mean under agent’s info. set belief divergence

Like in the previous example, a one-shot deviation in the past @, < u; with
t <s implies that A > 0. Intuitively, the principal would mistakenly think the
project is worse than it actually is (under the agent’s correct measure), and the
agent can easily beat the principal’s expectation and hence gain by A;ds >0
for all future s > 1.
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2.4 Incentive compatibility constraint and intuition
Proposition[Ilcharacterizes the agent’s incentive compatibility constraint, along
with the equilibrium consumption and continuation value heuristically derived
above. We provide a rigorous proof for Proposition[Ilin Appendix A.3. We also
highlight that the agent’s incentive compatibility constraint in Proposition [I]
is essentially the agent’s first-order condition in his effort decision, and we
further show that the first-order condition is also sufficient for the agent’s global
optimality in Section B4l given certain conditions imposed on the derived
optimal contract.

Proposition 1. Agent’s incentive compatibility constraint. For the contract
{cs, s} to be incentive-compatible and no-savings, {8;} must satisfy

w| [ ers—n BsVs
e b B[ g P a5l =p—p (19)

instantaneous incentive

future information rent p;

where p; denotes “information rent”:

o0 N 1 N
p:=EV [/ pe DB exp (—/ arﬂuUdB[f—E/ a*r? 302du)ds],
t t t
(20)

as the exp term inside the bracket equals vy /v,, using Equation (I2)). In addition,
Equation ([I)) implies that consumption (or wage) follows

In(—arv,)
cr=g(u)————, @
and the continuation payoff from the contract is
t 1 t
v =vgexp <—/ arfsod B! — E/ azrzﬂszazds). (22)
0 0

In a standard dynamic agency problem without profitability uncertainty (e.g.,
¢=0), the agent’s effort , at time ¢ should depend only on the time-¢ incentive
B; offered by the contract (i.e., u, =f;; recall the quadratic effort cost g(u,)=
©?/2). With learning and associated belief-manipulation, the agent’s effort
decisions across periods are interlinked, as evident by the forward-looking
nature of the second downward adjustment term in Equation (19).

The forward-looking downward adjustment term represents the information
rent to the agent. Intuitively, this term captures the marginal benefit of
manipulating the principal’s future belief downward[[ Also, the expression
in (T9) implies that the agent’s continuation payoffs {v} drop out, which allows
us to write the agent’s incentive compatibility constraint independent of {v}.
This convenient property is crucial for the tractability of our problem.

This information rent term captures the marginal rent that the agent may enjoy by deviating from the
recommended effort slightly, rather than the rent that the agent actually enjoys in equilibrium; in equilibrium
the principal knows the agent’s actual effort exactly. Nevertheless, like in any typical moral hazard model,
the marginal deviation benefit (marginal rent) is important in characterizing the agent’s incentive-compatibility
condition.
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2.4.1 Intuition for the incentive compatibility constraint. The rest of
this subsection is devoted to understanding the key incentive compatibility
constraint (I9). Consider again the example in Section 2Z3]in which the agent
reduces his effort to slightly below the recommended effort level u,, say u; —e€,
only at the time interval [¢,7+dt]. In other words, given the recommended
policy {ut}, the deviation effort policy is
. Us for s ¢ [t,t+dt];
= { s —€ otherwise. (23)

What is the impact of this deviation effort policy on the agent’s total payoff
from time ¢ onwards, including his instantaneous utility?

In Appendix A.4, we show that, under the new effort policy ¢, the agent’s
continuation payoff together his instantaneous flow payoff at # can be written
as

(0]
u(c,, iy —€)dt+v, +EY [/ e’“”dvs], (24)
t

where E! emphasizes that the agent forms his expectation based on his
information setinduced by u€. Using the result in Equation (I2), we can rewrite
@4 heuristically as:

. —arv) (dY; (uy —€)— pedt —mtdt)+
u(c,,u,—e)dt+vl+E¢L{ B ( r)( (e “t t )

[, e 60 By (—arvy)[dYy — (s +mb ) ds]

= u(cs, s —e)dt +u,+
saving effort cost instantaneously

B (—arve) (dY; (e —€) — pwedt —m!' di)+

hurting performance instantaneously

e o0 .
Ey / eTEDB (—arvy) (dYX—<M§+m§‘ )dt) + Ayds
t+dt

belief di S
martingale under info set generated by p cliet dlvergences

creating belief divergence persistently
(25)

There should be another correction term in (uj—us)ds in the second
equality, but it is zero because of 23)), that is, we consider a one-shot deviation
at time ¢ from the equilibrium effort policy.

There are two channels through which shirking at time ¢ affects the agent’s
continuation value. The first channel captures the instantaneous performance
effect, that is, the agent’s effort affects instantaneous performance dY; and,
thus, his continuation value. To see this, write performance dY;(u,;) over
[t,t+dt] as a function of time-t effort u,. Exerting effort u, —e hurts the
short-term performance over [?,7+dt] because

Modulated by incentives, this leads to a drop in the agent’s continuation value
by B;(—arv,;)-edt, via the channel of “hurting performance instantaneously.”
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The second channel is the persistent effect due to belief manipulation. As
discussed in Section 23] the agent’s shirking at time ¢ shifts the belief diver-
gence path {A;} away from the equilibrium path {A; =0} for s > ¢, according to
Equation (I3).

We show that the incentive compatibility constraint in Equation (I9) is
implied by Equation @3). By “reducing effort cost instantaneously” in Equation
3D, the agent’s marginal gain from shirking at ¢ is —u, (¢, 1) €dt. Since
u, (cry ) =—uc(cs, wy) by =arv, pu;, this marginal gain is (—arv,)pu,-edt. On
the other hand, shirking “hurts performance instantaneously” in Equation Z3),
which gives rise to a marginal cost of B,(—arv,)-edt. In standard models
without belief manipulation, these two forces fully determine the agent’s
trade-off in choosing his optimal effort at time 7.

Next we analyze the novel term “creating belief divergence persistently” in

€
@3). There, because dY; — (,u§ +mb )dt has zero mean, this term equals

EX [ f ooef<“>ﬂs(—arvs)Asds]. (26)

Recall that Equation (I7) says that the belief divergence in any future time s > ¢
is Ay=¢e ¢ edt. Plugging in to @), the marginal impact of shirking via
the channel of belief manipulation is

o0
EX / pe @M= g (—arvy) ds |-edt+o(edt)[@
' —— ——

future incentives marginal utility

Intuitively, if the principal mistakenly believes that the project is less profitable
than it should be, the agent’s normal performance will be considered superb.
The higher-powered the future incentives {,}, the greater the information rent.
And, for a risk-averse agent, the information rent depends on the agent’s future
marginal utility (—arvy) when receiving these manipulation benefits.

Combining three pieces together (canceling edt and ignoring higher-order
terms), and dividing both sides by time-¢ marginal utility (—arv,), we arrive at
the agent’s incentive compatibility constraint as Equation (I9).

3. Principal’s Problem and Optimal Contracting

From now on we focus on incentive-compatible contracts such that both parties
will have the same information set along the equilibrium path. As a result, we
write d B! and E#[-] as d B, and E[-], respectively, for ease of notation.

3.1 Rewriting the principal’s problem

In light of Proposition [l we first rewrite the principal’s problem in Equation
@. Proposition [l establishes an important link between recommended effort
{u,} and incentives {8;} in any incentive-compatible contracts. Moreover,
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the principal can choose the optimal {ﬂt*} to maximize her value, and the
corresponding optimal consumption process {c;‘} and the optimal effort policy
{,u;‘} are determined by Equations 2I) and (I9), respectively. Therefore, the
principal is as if choosing incentives {;} only:

maxE |:/ e7"(dY, —c,dt)], (27)
(Bt} 0
s.t. dY,=(u,+m;)dt+odB; and dm,=¢podB;, (28)
In(—arv,) r,
¢ =g (ue) = ————, where g ()= 5117, 29)
dv, =B, (—arv;)odB,, given vy, (30)
we=PBr— pr- 31

Here, Equation @8) describes the dynamics of output and posterior belief;
Equations @)1 are derived from Equations (I%—@2)) in Proposition [}
and p, in Equation @ZI) is given by Equation @0).

Thanks to the CARA preference, the agent’s continuation value v, separates
from the problem and the optimal contracting problem can be rewritten without
v;. Start from the principal’s objective in Equation 7). In Appendix A.5, we

show that
o0
]E[/ e (dY,—ctdt):|
0

=E|:/-ooe_”’uldt:| 3 <_ln(—arvo)>
0 ar

expected output C.E. of outside option v
00
-E [ e g(u) +ara®p?/2 )dt |, (32)
0 effort cost risk comp.

The discounted expected output is driven by the agent’s effort (recall that we
normalize the project’s initial profitability as my=0). The total compensation
costis the certainty equivalent (i.e., —In(—arvg)/(ar)) of delivering the agent’s
outside option vp, plus the monetary effort cost (i.e., g(i,)=p?/2), and the
discounted risk compensation due to incentive provisions. Thus, the certainty
equivalent separates from the problem, and the optimal solution { ,3,*} will be
independent of the agent’s initial outside option vy. This result comes from the
lack of wealth effect under CARA preferences.

Combining Equations (1)) and (32), the principal’s problem is simplified to

max[E /ooe_” M,—l,uz—larazﬂz dt (33)
{81} 0 2702 !

s.t. ;=B — p; with p; as given in @Q).
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Importantly, only incentives {8}, but not continuation payoffs {v}, enter the
problem (p; depends on {8} only).

3.2 Recursive formulation
We now recursively formulate the principal’s problem in (Z3)) and solve it by
dynamic programming. Let the continuation value in problem (33) be

oo
V(p)=E, |:/ e D (/'Lx - %,u% - %arazﬂf) dsi| . 34)
t

Consequently, the information rent p, serves as the only state variable for the
principal when designing the optimal contract. The information rent captures
the marginal benefit of the agent’s shirking due to the belief manipulation
effect. Recall the definition of the information rent in Equation @0, which,
together with the martingale representation theorem, implies that there exists
some progressively measurable process {o,p } so that the dynamics of p, follows
(see Appendix A.6):

dpt:[(¢+r)pt+ﬂt (arao,p—¢)]dt+o,det. (35)

From now on, we interpret {a," , ,3,} as our control because the pair determines
the drift and diffusion of p, in 33). As we will derive o,” and B, as a function of
the state variable p;, the control pair {U,p , B } gives the full history of {8, : ¢ >0}
that we are after.

Remark 1. Strictly speaking, the value function in Equation (34)) is only a part
of the principal’s full value function. Following the same steps in Equation (32)),
one can write the principal’s full value function J (m,, v, p;), which depends
on project posterior mean m,, the agent’s continuation value v,, and the agent’s
information rent p;, as

o0
J(m;, v, pr)=E, |:/ eir(xil)(dys —Csds):|
t

= ﬂ + M + V(Pr) . (36)
ar

ro. value function
expected proj. value C.E. of agent’s v,

The additive structure in Equation () gives rise to the first term, which captures
the expected project value m, / r without effort; and the CARA preference allows
us to separate the agent’s certainty equivalent given his continuation value v,
(the second term) from the probleml] Maximizing J (m;, v,, p;) is equivalent
to maximizing V (p;). As a result, we refer to V (p,) simply as the principal’s
value function wherever no confusion arises.

The certainty equivalent is the amount of money that an individual would view as equally desirable as a stream
of risky cash flows. Consuming M}ﬂ per period forever delivers a value of v for the CARA agent in our

model. For why this separation works, see Section[33]
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The optimal contract can now be fully characterized by an ordinary
differential equation (ODE), which is the Hamilton-Jacobi-Bellman (HJIB)
equation for the problem (3):

1 2
+ﬂ(aroap—¢)]+§Vp,,(op) . (37
We will verify in Proposition [ that 1+aro?+a*r’c? (V,,)z/Vpp >0 and
Vyp <0. Then, the first-order optimality conditions for the optimal control

{0/, B;} are given by

p=

l+p—9¢V, Vv
p=9 5 anda”*:—araﬁ*v—p. (38)

1+aro +(12 2 2(VP) pp
pp

Plugging them back into the HIB Equation (37, we have

2
1 1+p—0¢V,(p) 1
rV(p)== ( »(P) - — —5p2+<¢+r)p-vp<p). (39)
l+ar02+a2r202—[‘/”(p)]
Vpp(P)

We solve the problem in (37) by analyzing the above ODE in (39).

3.3 Optimal contracting

Before we start analyzing the optimal contract, we first consider a (trivial)
benchmark case. Suppose that the profitability 6, is observable. This is
essentially the classic [Holmstrom and Milgrom (1987) model, except that the
optimal contract always benchmarks the agent’s performance to 6;. Using the
incentive constraint u, = f;, the optimal solution is

1
HM _ pHM
— - —m- 4

Hi ! l+aro?’ (“0)
and the principal’s value is V#"=1/(2r (1+arc?)). The optimal contract
can be implemented by a constant equity share 1/(1+arc?) (with proper
benchmarking). What is more, the value V7™ serves as an upper bound for
our value function V (p) when profitability is unobservable:

1

(p)= 2r (1+ar02)

(41)

This is because VZM will be the principal’s value in our model but after
seeing the additional (precise) information about 6, (and she can dispose this
information freely).

To solve for the optimal contract, we analyze the ODE (39) with the
boundary condition in Equation (AI3) using the technique of dynamic
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programming. The following proposition is our main result, which characterizes
the properties of the value function, and hence the optimal policy {8*, o 7-*} like
in Equation (B8)). We impose the following parametric condition throughout the
paper, which restricts ¢ to be relatively small:
3 2

O T (14are?). (42)
[0} 2a
The sole purpose of this condition is to ensure the concavity of V(p) in the
proof method we employ

Proposition 2. Property of value function of optimal contracting. Suppose
that Equation (@2) holds. We have the following properties for V (p) € C? which
characterize the optimal contract.

1. V(0)=0and V,(0)=1/¢.
2. V(p) is strictly concave over a compact interval, and 1+aro?+

2

%

a2rle? (Vp) - 0.
Pp

3. There exists a unique p € (0, ﬁd) such that V,,(p) =0, where the constant

2
ﬁd= ¢ > 0.

Qp+r)arc?+r +\/(2¢+r)2a2r204 +2aro? [(<1>+r)2 +¢?]+r?
(43)
Under the optimal policy, p is an upper entrance-no-exit boundary, and
0is alower absorbing boundary 0 with V (0)=0. This implies that under
the optimal policy the endogenous state variable p; never exits the
interval [0, p].

In the optimal contract, the principal sets the initial information rent p§ to
be p. Afterwards, the state variable p; evolves according to Equation @3), and
the optimal control is characterized by Equation (38). Interestingly, property 3
in PropositionPlstates that the information rent p} will never wander out of an
endogenous interval [0, p], which suggests that it is suboptimal to promise too
much future incentives (recall information rent p; is the discounted promised

future incentives). This result is related to Holmstrom and Milgrom (1987)

in which the optimal incentives {,BIH M__L 2} remain constant over time.

l+aro
In our model with learning, the optimal incentives { ,3,*} become stochastic,
but the information rent { p} and hence incentives {8} remain endogenously
bounded due to stationary model primitives (CARA-normal setting, additive
technology in Equation (28), stationary learning, and the effort cost becomes
prohibitive for unbounded ).

17 we require this condition for our particular proof for the concavity of the value function V (p). When condition
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Remark 2. Though we are able to theoretically analyze the ODE @9) in
Proposition[2, numerically solving (39) and then investigating the properties of
optimal contracting are far from easy tasks. This is because the ODE in (39)) has
two singular points at both p=0and p =p: the coefficient in front of the second-
order derivative becomes zero at both end points (i.e., 67 (0)=c? (p)=0), and
as a result the ODE collapses to one of the first order. In addition, the singular
point p is a free boundary itself that we need to pin down. We are able to develop
a numerical algorithm to solve the ODE based on the approach of numerical
integration with a desirable degree of accuracy and numerical stability. The
|Internet Appendix|provides the details about the algorithm, as well as the Matlab
programs|'§

3.4 Validity of the first-order approach

In deriving the optimal contract in Proposition2] we rely on the agent’s incentive
compatibility constraint (I9), which is the agent’s first-order condition in his
effort decision. This is the so-called “first-order approach”, and in the dynamic
agency literature it is challenging to show that the necessary local first-order
condition for the agent’s problem is indeed sufficient for the agent’s global
optimality.

We have shown that in the optimal contract, the optimal policy { B:.of *}
are bounded. In this section, we show that we are able to guarantee the validity
of the first-order approach, after imposing certain sufficient conditions on
the volatility of information rent p,, that is, atp * in the optimal contract.
More specifically, we show that the first-order conditions in Proposition [l are
sufficient to ensure the agent’s global optimality by following an upper-bound
approach employed inﬁm M).

Proposition 3. Validity of the first-order approach. Suppose that in the
optimal contract |o/”*| is not too large, so that either (822) or (B23) in the
proof in Appendix A.8 holds. Then under the usual transversality condition,
given the optimal contract the policy in Proposition[lsolves the agent’s problem

in (@).

To illustrate the basic idea, suppose that the agent facing the employment
contract has deviated in the past, by having saved a bit and/or shirked a
bit. For private savings, the agent’s deviation state is his saving balance
S = fot e"=9 ¢y —¢y)ds; while for shirking that distorts the principal’s current
and future beliefs, the relevant deviation state is the belief distortion A;=
) fot €60 (s — s )ds. Given these two deviation states, we define a function

As an alternative approach, we have also conducted an asymptotical analysis that is tractable but may lead to

inaccurate approximation results when the agent is not sufficiently risk tolerant. The provides
the details about the asymptotical analysis.
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W (vy, ps; Sty Ay) which is constructed to be the upper bound of the agent’s
deviation value given the optimal contract and these two deviation states:

Wl v,pe 5 SLA | = vy - exp(—arsS;)
egbm contract dev. states egbm cont. payoff dev. value from savings

-exp (—ar <% A p; +o.5kA,2>> . (49

dev. value from belief distortions

In @3, two deviation states—private savings S; and belief manipulation A,—
enter the proposed upper bound of the agent’s deviation value in a multiplicative
way, capturing the potential interdependence between the agent’s deviating
incentives of consumption and effort.

The functional form of W (v, p;; S;, A,) is intuitive. When the agent never
deviates, that is, S, = A, =0, then W (v, p;; S;, A;)=v;, is the agent’s equilibrium
continuation payoff achieved by the equilibrium strategy satisfying the first-
order conditions. The second term exp(—arS;) in @) is the extra value
that the agent gains by having a private saving of S and hence always
consuming rS extra in all future states. The third term is about the gain
from belief distortion due to past effort deviations. We know that the first-
order gain from belief manipulation is the information rent p,, which explains
the linear coefficient p;/¢ in front of the belief distortion A, inside the
parentheses. The quadratic coefficient k is an appropriately chosen constant
(see the proof of Proposition Blin Appendix A.8) to ensure W(v;, p;;S;, A;)
being the upper bound of the agent’s deviation value, given his current
deviation state-pair (S;, A,)@ Because this upper bound satisfies the property
of W (vg, po=p; So=0, Ag=0)=vy, the strategy satisfying first-order conditions
achieves this upper bound, and hence is indeed optimal for the agent who is
endowed with zero savings and zero belief distortion.

The proof of Proposition Bl goes through if the volatility of information
rent 0" in the optimal contract is not excessively high. For instance, in the
proof in Appendix A.8, one sufficient condition (AZ3) requires that (¢,”)? <
o?¢? (r+2¢—¢?), and (A2 is a bit weaker; both conditions are easily
satisfied in our numerical examples. A similar condition for the volatility of
the endogenous state is required in Sannikov (2014). Intuitively, all else equal,
the agent’s global deviation value tends to be increasing in the volatility o,”*
of the state, because the agent has the “option” to adjust his optimal strategy
swiftly following a sequence of deviations and performance shocks.

It is worth noting that W (v, ps; St, Ar) is not exactly the deviation value of the agent; it just provides an upper
bound for the agent’s deviation value. This result is established by showing that the auxiliary gain process
f(;e*”u(a,ﬁx)dsﬂe*” W(vt, pr; S, Ar) follows a supermartingale for any feasible policy {¢;, 7i;}. For more
details, see the proof for PropositionBlin Appendix A.8.
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3.5 Discussion of assumptions

We make two simplifying assumptions in this paper: one is the assumption of
CARA utility function and the other is private savings. We now discuss the roles
played by these two assumptions in making the model tractable. In short, CARA
preference without wealth effect is the key to reducing the dimensionality into
a unidimensional problem; while private savings, under CARA preferences,
helps simplify the solution greatly. As will be discussed in the Concluding
Remarks, both assumptions are not responsible for our key qualitative results.

3.5.1 First-order approach and state variables. We first briefly outline the
general first-order approach that is widely used in the literature in solving this
class of problems. For any general utility function u(c, ), following the same
steps in Section 2.4.1, we can derive the first-order incentive-compatibility
condition for the (interior) optimal effort policy as

—uy(cr, )= B — Pr (45)

where E, the diffusion term, expressed in utilities, in the process of continuation
value v, (see Equation (I0)):

Bi=(—arv)-Bi; (46)

and p; the information rent that captures the additional value of shirking due
to belief manipulation:

00
pr=E, |: /
Bt~ and
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3.5.2 CARA preferences. For CARA preferences, the state variable, v,
(i.e., the agent’s continuation payoff) always separates out from the problem,
regardless whether we allow for private savings or not. More specifically,
when the agent has CARA preferences, the principal’s value function is in the
form of

~ — ~ — ~. In(—v))
J(vr,p,,qf)=J(—l,p,,q,)+T’E1 (49)

The intuition is as follows. Since u(c,+8., )= cu(c,, u;), shifting the
CARA agent’s consumption by a constant §.. in all states multiplies the agent’s
utility by the same factor e~ under both the recommended strategy and all
deviations. As a result, shifting consumption by §.=— ln( Y which shifts the
agent’s continuation payoff multiplicatively by a factor of —v >0, does not
change the incentive compatibility of the contract. Applying this argument
to the optimal contract, Q) simply says that the principal is as if facing an
agent with a normalized continuation value of —1, but then shifting the agent’s
consumption all the states by — ln( Y at the cost of M in present value.
This argument holds regardless whether the no- savmg constramt is present
or not.

For general utility functions, we typically need to solve a partial differential
equation (PDE) with v being one of the state variables. For simplicity, suppose
that the agent cannot privately save, so that the principal’s value function
can be written as J (vy, py). Standard argument implies that J ( -) satisfies the
following PDE:

~

rJ (v, D)= mﬁax,u(c ,3 p)—c+J (rv— (c,,u(c,,B;ﬁ)))
By

~ 2 ~ ~; ~ ~ ~
+J;((r+¢)ﬁ—¢,§)+"7 [T B+ 297 +27,5B7]. (50)

Given the optimal consumption c*, u(c*; ,5 , ﬁ) denotes the agent’s optimal
effort satisfying the first-order condition —u, (c*,u(c*; 8,7))=f—7p in
Equation @3), and ¥ is the diffusion term associated with p. Solving Q)
is a daunting task in general

3.5.3 What if the agent cannot privately save?. We have also assumed that
the agent can privately save to smooth his consumption over his life time.
Although for general utility functions allowing for private savings demands
another state variable g,, for CARA preferences it does not. To see this, Lemmal]
and Equation ([3) imply that g, = —arv, always, rendering g; to be redundant

The certainty equivalent term M in @8 differs from l"( o) ) by a constant ]"‘(l‘ir) which is absorbed in
T=1.5.30.

For papers studying dynamic contracting problems with private savings in which the agent has non-CARA
preferences, see[Kocherlakod €004),[Hd €013), and, more recently, o14d).
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given v;. The intuition is simple: Private savings imply that the marginal value
of saving equals the marginal value of consumption, which is proportional to
the level of utility under the CARA utility.

As a result, under CARA preferences, we only need to keep track of the
agent’s information rent as the single state variable, whether or not private
savings are allowed. This paper fully solves the case with private savings, and
Appendix A.9 outlines the derivations for the case without private savings.
There, we show that similar to the private saving case, the key state variable
for the optimal contract is again (recall @8) and @2)) p, = p;/(—arv;), and we
derive the ODE for the principal’s value function V"¢ (p).

We emphasize that allowing for private savings under CARA preferences
greatly simplifies our problem, which facilitates our rigorous characterization of
the optimal contract in PropositionPland hence the verification of the first-order
approach in Proposition Bl We illustrate this point by comparing the agent’s
key incentive compatibility condition for the setting with private savings to
that without. Under both settings, the agent’s incentive compatibility condition

is —u,, (¢, )= B O
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which the optimal policies are stochastic and compare it to both the Holmstrom
and Milgrom ) benchmark and the contract with optimal deterministic
incentives. The discussion focuses on two qualitative features of optimal
contracting: front-loaded incentives and option-like incentives.

4.1 Contract with deterministic incentives

We will show that the optimal incentives are front-loaded (or, time decreasing)
in dynamic contracting with learning. This result is best illustrated when we
constrain the incentives {8} to be deterministic (but can vary over time), a case
in which we can analytically derive the time-decreasing incentives. This case
also provides an important benchmark for the fully stochastic optimal contract,
because deterministic contracts do rule out the option-like feature (i.e., raising
incentives following good performance).

The reason that {8} being deterministic helps is that we can move the
conditional expectation in Equation @0) inside the integral@ so that the
information rent p,=¢ [ e *¢~DBds is a deterministic process with
a”=0. V¢(p) denotes the value function with deterministic policies, where
the superscript “d” stands for “deterministic.” Plugging o” =0 into (37), we
have g¢(p)=(1+p—¢V{)/(1+ara?), with the resultant HJB equation as:

1+p—oVi(p))*
rVd(P)=%( vy o)

1
T~ p=5P+V (D@4 p.

The following proposition solves the above ODE in closed form.

Proposition 4. Optimal deterministic contracts. Within the class of
deterministic contracts, the value function V¢ (p) is quadratic

1
Vd(p)z—EAdp2+de. (52)

The evolution of information rent, incentive, and effort are given by:

BY _ 1+ A%
pi=—ge Bl = pl and =7 pl'=

_ d Ad¢—ar02 d
= - -

pr- (53)

l1+aro? l1+aro?

where)\z—¢—r+%¢>0, B?=1/¢ and

. (2(;5+r)ar02+r+\/(2¢)+r)zazr204+2ar62 [(¢+r)2+¢2] +r2

242

(54)

Note that p¢ in Equation @3) equals p(‘)l, which maximizes the time-0
principal’s value under deterministic contracts.

This is because of the property of exponential martingale (recall {B} being bounded):
)
E; [exp(—uroftsﬂudBu—%frs 3du>i|=l.
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The above proposition shows that in the optimal deterministic contract, the
information rent p?, the incentive B¢, and the optimal effort x¢ all follow
certain exponentially decaying paths (toward zero). Moreover, at =0, from
Equation (33)), we have

Adqb —aro?

< =
l+arc? l1+arc? l+aro?

Thus, the entire optimal effort path is below the[Holmstrom and Milgrom (1987)

benchmark.

The optimality of the front-loaded effort policies comes from the forward-
looking nature of information rent. From the agent’s incentive-compatibility
condition in Equation ([9), the belief manipulation effect implies that giving
incentives later tends to make the agent shirk earlier, but not the other way
around. This implies that later incentives are more costly than early ones, and,
consequently, the optimal contract implements higher effort in earlier periods.
Clearly, this result relies on the commitment ability in long-term contracting.
Indeed, in Section 4] we show that equilibrium incentives and effort policies
are constant over time when relationships are short term.

Both [Prat and Jovanovid (2014) and our model find front-loaded incentives
to be optimal. Because ) implements a constant effort,
the forward-looking nature of information rent implies that the compensation
contract has to offer front-loaded incentivesd Our model allows the optimal
contract to adjust on the effort margin (not just incentives), and cheaper
incentive provisions in earlier periods naturally push the optimal contract to
implement a front-loaded effort profile.

The front-loaded effort policies also arise in models with career concerns
(e.g., IGibbons and Murphyl [1992; [Holmstrond [1999), but through a distinct
mechanism. There, agents in their early careers face higher uncertainty in their
abilities, and thus work harder to impress the market (but the market will not
be fooled in equilibrium, a standard signal-jamming problem). This force is not
present in our stationary model, as the uncertainty of the profitability/ability
(i.e., the posterior variance of 6,) stays constant over time.

1—aro?pd 1
0 MgIM

d_ d_
Mo = 0=

4.2 Value function and optimal policies

Now we return to the contracting space of fully stochastic incentives, and
illustrate two qualitative properties of our optimal contract. First, similar
to the case of deterministic contracts studied in Section ELI] the fully
stochastic optimal contract features front-loaded incentives. Second, the

Both [DeMarzo and Sannikoy 2017) and [Prat and Jovanovid 2014) assume that the effort cost is linear over
the feasible interval [0, 1] and focus on implementing the highest effort level 1. In addition, [Prat and Jovanovid
{2013) study the nonstationary case in which the underlying profitability 6 (as a parameter) never changes, and
as time passes, both parties eventually learn the true profitability. In the we show that the
pattern of time-decreasing effort pattern is robust to this assumption.
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Figure 2

Value function and optimal policies in the optimal contract. Solid lines correspond to the optimal stochastic
contract, and dashed lines correspond to the optimal deterministic contract. The parameters are r =0.5,a=1,0 =8,

and ¢=0.5. The Holmstrom-Milgrom (1987) benchmark has VAM=— 1 __-0.03 and gHM =, HM =
2r(1+araz)

1 5 =0.03 under the parameter specification.
l+aro

optimal management of the agent’s information rent leads to an option-like
feature in the optimal contract, that is, incentives rise after good performance.
As explained, this option-like feature is explicitly ruled out in deterministic
contracts.

4.2.1 How does the optimal stochastic contract help?. From now on we
always refer to optimal policies, and without risk of confusion we omit the
superscript asterisk. Figure [2] plots the value function V(p), the optimal
control {B(p),o”(p)}, and the associated optimal policy u,;(p)=8:(p)—p
in solid lines. For comparison, in each panel we also plot the corresponding
deterministic counterparts in dashed lines, and the [Holmstrom and Mil