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Abstract

A conditional asset pricing model with risk and uncertainty implies that the time-
varying exposures of equity portfolios to the market and uncertainty factors carry pos-
itive risk premiums. The empirical results from the size, book-to-market, momentum,
and industry portfolios indicate that the conditional covariances of equity portfolios
with market and uncertainty predict the time-series and cross-sectional variation in
stock returns. We nd that equity portfolios that are highly correlated with economic
uncertainty proxied by the variance risk premium (VRP) carry a signi cant, annualized
8 percent premium relative to portfolios that are minimally correlated with VRP.
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1 Introduction

This paper investigates whether the market price of risk and the market price of uncer-
tainty are significantly positive and whether they predict the time-series and cross-sectional
variation in stock returns. Although the literature has so far shown how uncertainty im-
pacts optimal allocation decisions and asset prices, the results have been provided based on
a theoretical model.! Earlier studies do not pay attention to empirical testing of whether
the exposures of equity portfolios and individual stocks to uncertainty factors predict their
future returns. We extend the original consumption-based asset pricing models to propose
a conditional asset pricing model with time-varying market risk and economic uncertainty.
According to our model, the premium on equity is composed of two separate terms; the first
term compensates for the standard market risk and the second term represents additional
premium for variance risk. We test whether the time-varying conditional covariances of eq-
uity returns with market and uncertainty factors predict the time-series and cross-sectional
variation in future stock returns.

In this paper, economic uncertainty is proxied by the variance risk premia in the U.S.
equity market. Following Britten-Jones and Neuberger (2000), Jiang and Tian (2005), and
Carr and Wu (2009), we define the variance risk premium (VRP) as the difference between
expected variance under the risk-neutral measure and expected variance under the objective
measure.? We generate several proxies for financial and economic uncertainty and then

compute the correlations between uncertainty variables and VRP. The first set of measures

1Although formal understanding of uncertainty and uncertainty aversion is poor, there exists a de nition
of uncertainty aversion originally introduced by Schmeidler (1989) and Epstein (1999). In recent studies,
uncertainty aversion is de ned for a large class of preferences and in di erent economic settings by Epstein
and Wang (1994), Epstein and Zhang (2001), Chen and Epstein (2002), Klibano , Marinacci, and Muk-
erji (2005), Maccheroni, Marinacci, and Rustichini (2006), and Ju and Miao (2012). In addition to these
theoretical papers, Ellsberg’s (1961) experimental evidence demonstrates that the distinction between risk
and uncertainty is meaningful empirically because people prefer to act on known rather than unknown or
ambiguous probabilities.

20ther studies (e.g., Rosenberg and Engle (2002), Bakshi and Madan (2006), Bollerslev, Gibson, and
Zhou (2011), and Bekaert, Hoerova, and Duca (2012)) interpret the di erence between the implied and
expected volatilities as an indicator of the representative agent’s risk aversion. Bollerslev, Tauchen, and
Zhou (2009) and Drechsler and Yaron (2011) relate the variance risk premia to economic uncertainty risk.



can be viewed as macroeconomic uncertainty proxied by the conditional variance of the U.S.
output growth and the conditional variance of the Chicago Fed National Activity Index
(CFNAI). The second set of uncertainty measures is based on the extreme downside risk
of financial institutions obtained from the left tail of the time-series and cross-sectional
distribution of financial firms’ returns. The third uncertainty variable is related to the
health of the financial sector proxied by the credit default swap (CDS) index. The last
uncertainty variable is based on the aggregate measure of investors’ disagreement about
individual stocks trading at NYSE, AMEX, and NASDAQ. We find that the variance risk
premium is strongly and positively correlated with all measures of uncertainty considered in
the paper. Our results indicate that VRP can be viewed as a sound proxy for financial and
economic uncertainty.

Anderson, Ghysels, and Juergens (2009) introduce a model in which the volatility, skew-
ness and higher order moments of all returns are known exactly, whereas there is uncertainty
about mean returns. In their model, investors’ uncertainty in mean returns is defined as the
dispersion of predictions of mean market returns obtained from the forecasts of aggregate
corporate profits. They find that the price of uncertainty is significantly positive and ex-
plains the cross-sectional variation in stock returns. Bekaert, Engstrom, and Xing (2009)
investigate the relative importance of economic uncertainty and changes in risk aversion in
the determination of equity prices. Distinct from the uncertainty that arises from disagree-
ment among professional forecasters, Bekaert, Engstrom, and Xing (2009) focus on economic
uncertainty proxied by the conditional volatility of dividend growth, and find that both the
conditional volatility of cash flow growth and time-varying risk aversion are important de-
terminants of equity returns.

Different from the aforementioned studies, we propose a conditional asset pricing model
in which economic uncertainty (proxied by VRP) plays a significant role along with the

standard market risk. After introducing a two-factor model with risk and uncertainty, we



investigate the significance of risk-return and uncertainty-return coefficients using the time-
series and cross-sectional data. Our empirical analyses are based on the size, book-to-market,
momentum, and industry portfolios. We first use the dynamic conditional correlation (DCC)
model of Engle (2002) to estimate equity portfolios’ conditional covariances with the market
portfolio and then test whether the conditional covariances predict future returns on equity
portfolios. We find the risk-return coefficients to be positive and highly significant, implying
a strongly positive link between expected return and market risk. Similarly, we use the
DCC model to estimate equity portfolios’ conditional covariances with the variance risk
premia and then test whether the conditional covariances with VRP predict future returns
on equity portfolios. The results indicate a significantly positive market price of uncertainty.
Equity portfolios (individual stocks) that are highly correlated with uncertainty (proxied by
VRP) carry a significant premium relative to portfolios that are uncorrelated or minimally
correlated with VRP.

We also examine the empirical validity of the conditional asset pricing model by test-
ing the hypothesis that the conditional alphas on the size, book-to-market, and industry
portfolios are jointly zero. The test statistics fail to reject the null hypothesis, indicating
that the two-factor model explains the time-series and cross-sectional variation in equity
portfolios. Finally, we investigate whether the model explains the return spreads between
the high-return (long) and low-return (short) equity portfolios (Small-Big for the size port-
folios; Value-Growth for the book-to-market portfolios; and HiTec-Telecm for the industry
portfolios). The results from testing the equality of conditional alphas for high-return and
low-return portfolios provide no evidence for a significant alpha for Small-Big, Value-Growth,
and HiTec-Telem arbitrage portfolios, indicating that the two-factor model proposed in the
paper provides both statistical and economic success in explaining stock market anomalies.
Overall, the DCC-based conditional covariances capture the time-series and cross-sectional

variation in returns on the size, book-to-market, and industry portfolios because the essential



tests of the model are passed: (i) significantly positive risk-return and uncertainty-return
tradeoffs; (ii) the conditional alphas are jointly zero; and (iii) the conditional alphas for
high-return and low-return portfolios are not statistically different from each other.® These
results are robust to using an alternative specification of the time-varying conditional covari-
ances with an asymmetric GARCH model, using a larger cross-section of equity portfolios
in asset pricing tests, and after controlling for a wide variety of macroeconomic variables,
market illiquidity, and credit risk.*

Finally, we investigate the cross-sectional asset pricing performance of our model based
on the 100 size and book-to-market portfolios. Using the long-short equity portfolios and the
Fama and MacBeth (1973) regressions, we test the significance of a cross-sectional relation
between expected returns on equity portfolios and the portfolios’ conditional covariances
(or betas) with VRP. Quintile portfolios are formed by sorting the 100 Size/BM portfolios
based on their VRP-beta. The results indicate that the equity portfolios in highest VRP-
beta quintile generate 8 percent more annual raw returns and alphas compared to the equity
portfolios in the lowest VRP-beta quintile. These economically and statistically significant
return differences are also confirmed by the Fama-MacBeth cross-sectional regressions, which
produce positive and significant average slope coefficients on VRP-beta.

The rest of the paper is organized as follows. Section 2 presents the conditional asset
pricing model with risk and uncertainty. Section 3 describes the data. Section 4 outlines the
estimation methodology. Section 5 presents the empirical results. Section 6 investigates the

cross-sectional asset pricing performance of our model. Section 7 concludes the paper.

SWe nd a signi cantly positive risk-return and uncertainty-return tradeo s in the cross-section of mo-
mentum portfolios as well. However, the two factor model introduced in the paper rejects the hypotheses
that (ii) the conditional alphas on momentum portfolios are jointly zero and (iii) the conditional alphas for
winner and loser portfolios are not statistically di erent from each other.

4Alternatively, our empirical result on VRP may be interpreted as compensating for the rare disaster risk
(Gabaix, 2011), jump risk (Todorov, 2010; Drechsler and Yaron, 2011), or tail risk (Bollerslev and Todorov,
2011; Kelly, 2011). Alternatively, VRP can be generated from a habit-formation model with sophisticated
consumption dynamics (Bekaert and Engstrom, 2010). The nding may also be related to the expected
business conditions (Campbell and Diebold, 2009) and its cross-sectional implications for stock returns
(Goetzmann, Watanabe, and Watanabe, 2009).



2 Economic Motivation for VRP Factor

To guide our economic interpretation of the empirical finding in the main paper, we follow the
strategy of Campbell (1993, 1996) to substitute unobservable consumption-based measures
with observable market-based measures. Under a structural model with recursive preference
and consumption uncertainty (Bollerslev, Tauchen, and Zhou, 2009), one can show that the
two pricing factors—market return and variance risk premium—span all systematic varia-
tions in any risky assets. Our methodology basically follows Campbell, Giglio, Polk, and
Turley (2014) by substituting out the consumption growth in the pricing kernel, and then

we substitute the unobservable economic uncertainty with variance risk premium.

2.1 Implication from Consumption-Based Asset Pricing Model

The representative agent in the economy is endowed with Epstein-Zin-Weil recursive prefer-

ences, and has the value function V; of her life-time utility as

%

Vi = (1 - )Ct¥ + (Et [Vt}l-l’q)ﬂ o ; (1)

where C; is consumption at time t, denotes the subjective discount factor, refers to the

coefficient of risk aversion, = 11 1, and equals the intertemporal elasticity of substitution
P
(IES). The key assumptions are that > 1 and > 1 hence < 0. Consequently, the

logarithm of the pricing kernel, My+; = log(M+1), may be expressed as,
M1 = log — —Quer + ( — 1)lpa; (2)

where I+ is the return on the asset that pays the consumption endowment flow.

Suppose that log consumption growth and its volatility follow the joint dynamics

Ot+1 = g + g,tzg,t+1; (3)
§,t+l = A+ o S,t + Ui Zot+1; (4)
Qi+1 = a3+ U+ ’q\/@zq,tﬂ; (5)



where , > 0 denotes the constant mean growth rate, ;,t+1 represents time-varying volatility
in consumption growth, and @, introduces the volatility uncertainty process in the consump-
tion growth process.®

Let w; denote the logarithm of the price-dividend or wealth-consumption ratio; and

conjecture a solution for w; as an affine function of the state variables, ;)t and Qy,
Wy = Ao + A, ;t + Ay (6)

One can solve for the coefficients Ag; A, < 0 and A; < 0 using the standard Campbell and
Shiller (1988) approximation Fy+3 = o+ 1Wi+1 — W; + Qgv1. Substituting this equation into

the pricing kernel (2), we get
M1 = log +— o= =W+ — 1Wig — Tiag; (7)

without referencing consumption growth, as in Campbell, Giglio, Polk, and Turley (2014).
Suppose that asset returns have conditional joint lognormal distributions with time-

varying volatility, then the risk premium on any asset i is given by
1 . .
Eilipes = Fpp 4 S Vanfiag = —Covy My K. (8)

Using the pricing kernel without consumption (7), where the first three items are known
at time t, we obtain the conditional asset pricing relation between the risk premium of any
asset and the asset’s covariances with the wealth return and time-varying shocks to future

consumption:
1 . . .
O P §Vartrt+l = COVt[ri,t+1y rt+l] - — 1COVt[ri,t+1, Wi+1]; (9)

where > 1 and —% 1=>0.

One obvious advantage of Campbell (1993, 1996) is to substitute out consumption growth

in the asset pricing tests, which also motivates using the market as a feasible proxy for total

5The parameters satisfy a > 0;aq > 0, | | < 1,| /<1, 'g> 0;and {zg}, {z1 } and {zq} are iid
Normal(0; 1) processes jointly independent with each other.



wealth. Furthermore, we substitute out the consumption growth volatility as well, using
the result Var;r4q = S,t + 2 (A§ + Ag’s) g: from Bollerslev, Tauchen, and Zhou (2009).

Replacing W41 with the wealth-consumption ratio equation (6), we arrive at
1
Eilige1 —rpe + §Vartrt+l + — 1A, Covi[l i+1; VarieaMias)
= Covy[lie1; M) + — 1[As i (ACZ, + As ’2) — A Covy [l 415 Qer -

Overlooking the Jensen’s inequality term Var,r;+1 and the high order term Covy[r; 441; Varis1ri+2],
we can see that the risk-return tradeoff — before Covy[r; ;41; Fi+1] is the risk-aversion coef-
ficient and is positive. While the uncertainty-return tradeoft % 1A, 2 (Aff + Ag’g) - A,
before Covy[r; 1+1; Qi+1] is not clearly signed, depending on the relative strength of A, versus
A,. In fact, even if the risk-aversion coefficient is zero, the uncertainty-return tradeoft is still
non-zero in general.

Finally, since the consumption volatility-of-volatility ¢, or economic uncertainty is not
directly observable from the data, we follow the same spirit of Campbell et al. (2014) and
substitute the unobservable uncertainty variable g, with the readily available variance risk
premium measure. Using the solution from Bollerslev, Tauchen, and Zhou (2009) link-
ing variance risk premium (VRP;) and economic uncertainty variable (q;): VRP; = ( —
1) 1 [AU +A, ? (Aff + Afl’g) ’q} (¢, we reach our final result regarding the cross-sectional

pricing implications from both risk and uncertainty proxies:

1
Eiriper — Ty + §Vartrt+l + — 1A, Covi[rt+1; VarieaMias)

= Covy[r;+1; Ma1]
7 A T(AZHAY) - A

w .
i Covi[li+1;VRP
( B 1) 1 [Ag +A, % (ACZT + Ag’g) ,ﬂ t[ t+1 t+1]
= A Coviffises; Miaa] + B - Covi[Fi 1, VRPy (10)
where the risk-return tradeoff coefficient A = and the uncertainty-return tradeoff coefficient

%nl[Agnf(A(2,+A§<pg) Al

= ® 1)/@1[AU+AQH%<A§+AEQO5)¢(ZI]'

Note that the shocks to VRP and @; are proportional to

each other and of the same sign, therefore carrying the same pricing information.
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Campbell (1993) shows that, in an intertemporal CAPM setting (Merton, 1973), the
appropriate choices for factors relevant in cross-sectional asset pricing tests should be the
current market return and any other variables that have information about the future market
returns. Given the recent evidence that variance risk premium (VRP) possesses a significant
forecasting power for short-term market returns, our result derived above regarding the cross-
sectional asset pricing implication of VRP is not surprising at all. Although the sign of the
uncertainty-return tradeoff coefficient B is not determined for general parameter setting, our
empirical exercise finds it to be positive. The intuition for the positive slope coefficient B, is
that investors dislike the reduced ability to hedge against a deterioration in the investment
opportunity captured by VRP—which positively predicts future market returns. Therefore
investors require a higher return premium to hold the assets or stocks that positively covary
with VRP (Campbell, 1996).

Note that although we look at the cross-sectional pricing implication of variance risk
premium, Ang, Hodrick, Xing, and Zhang (2006) investigated the cross-sectional pricing
implication of the change in VXO. These two approaches are closely related but also have
important differences. VXO is the option market implied volatility measure, while variance
risk premium is the difference between implied and expected variances. Therefore, it is
likely that, in the cross-section, VXO and VRP perform differently in terms of beta pricing.
Alternatively, VRP’s role for cross-sectional asset pricing may also be motivated from a
systematic correlation risk factor, as in Buraschi, Trojani, and Vedolin (2014), where there
is an equivalence between correlation risk premium and variance risk premium (Driessen,
Maenhout, and Vilkov, 2009).

Furthermore, the literature on index option typically finds a negative volatility risk pre-
mium driven by the negative correlation between the volatility shock and shock to market
returns (see, among others, Bates, 1996; Pan, 2002; Bakshi and Kapadia, 2003). In our

consumption-based asset pricing model, although the shocks to consumption growth and



volatility uncertainty are independent, the market return does contain a component driven
by the consumption volatility uncertainty (Bollerslev, Tauchen, and Zhou, 2009). There-
fore, from a market-based model perspective, variance risk premium shock carries important
information about the equity risk premium—the component due to economic uncertainty.
In essence, variance risk premium is a much cleaner estimate of the uncertainty premium
component in equity return, hence the strong pricing power of variance risk premium for

cross-sectional stock returns.®

2.2 Variance Risk Premia and Economic Uncertainty Measures

For the option-implied variance of the S&P500 market return, we use the end-of-month
Chicago Board of Options Exchange (CBOE) volatility index on a monthly basis (VIX?2/12).
Following earlier studies, the daily realized variance for the S&P500 index is calculated as
the summation of the 78 intra-day five-minute squared log returns from 9:30am to 4:00pm
including the close-to-open interval. Along these lines, we compute the monthly realized
variance for the S&P500 index as the summation of five-minute squared log returns in a
month. As discussed in the internet appendix (Section A), variance risk premium (VRP)
at time t is defined as the difference between the ex-ante risk-neutral expectation and the
objective or statistical expectation of the return variance over the [t; t+ 1] time interval. The
monthly VRP data are available from January 1990 to December 2012.

To give a visual illustration, Figure 1 plots the monthly time-series of the level and change
in the variance risk premium (VRP). The VRP proxy is moderately high around the 1990
and 2001 economic recessions but much higher during the 2008 financial crisis and to a lesser
degree around 1997-1998 Asia-Russia-LTCM crisis. The variance spike during October 2008
already surpasses the initial shock of the Great Depression in October 1929. The huge run-up
of VRP in the fourth quarter of 2008 leads the equity market bottom reached in March 2009.

The sample mean of VRP is 18.47 (in percentages squared, monthly basis), with a standard

SWe thank a referee for suggesting this interpretation.



deviation of 21.90. Notice that the extraordinary skewness (3.76) and kurtosis (27.24) signal
a highly non-Gaussian process for VRP.

According to the conditional asset pricing specification, VRP is viewed as a proxy for
uncertainty. To test whether VRP is in fact associated with alternative measures of uncer-
tainty, we generate some proxies for financial and economic uncertainty. We obtain monthly
values of the U.S. industrial production index from G.17 database of the Federal Reserve
Board and monthly values of the Chicago Fed National Activity Index (CFNAI) from the
Federal Reserve Bank of Chicago for the period January 1990 — December 2012.” We use the
GARCH(1,1) model of Bollerslev (1986) to estimate the conditional variance of the growth
rate of industrial production and the conditional variance of the CFNAI index. These two
measures can be viewed as macroeconomic uncertainty. The sample correlation between
VRP and economic uncertainty variables is positive and significant; sample correlation is
53.28% with the variance of output growth and 31.01% with the variance of CFNAT index.

Our second set of uncertainty measures is based on the downside risk of financial institu-
tions obtained from the left tail of the time-series and cross-sectional distribution of financial
firms’ returns (Allen, Bali, and Tang, 2012). Specifically, we obtain monthly returns for fi-
nancial firms (6000 < SIC code < 6999) for the sample period January 1990 to December
2012. Then, the 1% nonparametric Value-at-Risk (VaR) measure in a given month is mea-
sured as the cut-off point for the lower one percentile of the monthly returns on financial
firms.® For each month, we determine the one percentile of the cross-section of returns on fi-
nancial firms, and obtain an aggregate 1% VaR measure of the financial system for the period

1990-2012. In addition to the cross-sectional distribution, we use the time-series daily return

"The CFNAI is a monthly index that determines increases and decreases in economic activity and is
designed to assess overall economic activity and related in ationary pressure. It is a weighted average of
85 existing monthly indicators of national economic activity, and is constructed to have an average value of
zero and a standard deviation of one. Since economic activity tends toward a trend growth rate over time,
a positive index reading corresponds to growth above trend and a negative index reading corresponds to
growth below trend.

8 Assuming that we have 900 nancial rms in month t, the nonparametric measure of 1% VaR is the 9th
lowest observation in the cross-section of monthly returns.

10



distribution to estimate 1% VaR of the financial system. For each month from January 1990
to December 2012, we first determine the lowest daily returns on financial institutions over
the past 1 to 12 months. The catastrophic risk of financial institutions is then computed
by taking the average of these lowest daily returns obtained from alternative measurement
windows. The estimation windows are fixed at 1 to 12 months, and each fixed estimation
window is updated on a monthly basis. These two downside risk measures can be viewed as
a proxy for uncertainty in the financial sector. The sample correlations between VRP and
financial uncertainty variables are positive and significant: 48.42% with the cross-sectional
VaR measure and 38.73% with the time-series VaR measure.

The third uncertainty variable is related to the health of the financial sector proxied by the
credit default swap (CDS) index. We download the monthly CDS data from Bloomberg. For
the sample period January 2004 — December 2012, we obtain monthly CDS data for Bank of
America (BOA), Citigroup (CICN), Goldman Sachs (GS), JP Morgan (JPM), Morgan Stan-
ley (MS), Wells Fargo (WFC), and American Express (AXP). Then, we standardized all
CDS data to have zero mean and unit standard deviation. Finally, we formed the standard-
ized CDS index (EWCDS) based on the equal-weighted average of standardized CDS values
for the 7 major financial firms. For the common sample period 2004-2012, the correlation
between VRP and EWCDS is positive, 44.21%, and highly significant.

The last uncertainty variable is based on the aggregate measure of investors’ disagree-
ment about individual stocks trading at NYSE, AMEX, and NASDAQ. Following Diether,
Malloy, and Scherbina (2002), we use dispersion in analysts’ earnings forecasts as a proxy

for divergence of opinion. It is likely that investors partly form their expectations about a



about 15.23%. Overall, these results indicate that the variance risk premia is strongly and
positively correlated with all measures of uncertainty considered here. Hence, VRP can be

viewed as a sound proxy for financial and economic uncertainty.

3 Data
3.1 Equity Portfolios

We use the monthly excess returns on the value-weighted aggregate market portfolio and
the monthly excess returns on the 10 value-weighted size, book-to-market, momentum, and
industry portfolios. The aggregate market portfolio is represented by the value-weighted
NYSE-AMEX-NASDAQ index. Excess returns on portfolios are obtained by subtracting
the returns on the one-month Treasury bill from the raw returns on equity portfolios. The
data are obtained from Kenneth French’s online data library.® We use the longest common
sample period available, from January 1990 to December 2012, yielding a total of 276 monthly
observations.

Table T of the internet appendix presents the monthly raw return and CAPM Alpha
differences between high-return (long) and low-return (short) equity portfolios. The results
are reported for the size, book-to-market (BM), momentum (MOM), and industry portfo-
lios for the period January 1990 — December 2012.2° The OLS t-statistics are reported in
parentheses. The Newey and West (1987) t-statistics are given in square brackets.

For the ten size portfolios, “Small” (Decile 1) is the portfolio of stocks with the smallest
market capitalization and “Big” (Decile 10) is the portfolio of stocks with the biggest market
capitalization. For the 1990-2012 period, the average return difference between the Small and
Big portfolios is 0.31% per month with the OLS t-statistic of 1.02 and the Newey-West (1987)

t-statistic of 0.99, implying that small stocks on average do not generate higher returns than

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data _library.html
10Since the monthly data on variance risk premia (VRP) start in January 1990, our empirical analyses
with equity portfolios and VRP are based on the sample period January 1990 - December 2012.
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big stocks. In addition to the average raw returns, Table I of the internet appendix presents
the intercept (CAPM alpha) from the regression of Small-Big portfolio return difference on
a constant and the excess market return. The CAPM Alpha (or abnormal return) for the
long-short size portfolio is 0.25% per month with the OLS t-statistic of 0.84 and the Newey-
West t-statistic of 0.80. This economically and statistically insignificant Alpha indicates that
the static CAPM does explain the size effect for the 1990-2012 period.

For the ten book-to-market portfolios, “Growth” is the portfolio of stocks with the lowest
book-to-market ratios and “Value” is the portfolio of stocks with the highest book-to-market
ratios. For the sample period January 1990 — December 2012, the average return difference
between the Value and Growth portfolios is economically and statistically insignificant; 0.23%
per month with the OLS t-statistic of 0.77 and the Newey-West t-statistic of 0.69, implying
that value stocks on average do not generate higher returns than growth stocks. Similar to
our findings for the size portfolios, the unconditional CAPM explains the value premium for
the 1990-2012 period; the CAPM Alpha (or abnormal return) for the long-short book-to-
market portfolio is only 0.21% per month with the OLS t-statistic of 0.69 and the Newey-West
t-statistic of 0.54.

For the ten momentum portfolios, Loser (Decile 1) is the portfolio of stocks with the
lowest cumulative return over the previous 11 months (skipping the past one month) and
Winner (Decile 10) is the portfolio of stocks with the highest cumulative return over the
previous 11 months.!! For the 1990-2012 period, the average return difference between the
Loser and Winner portfolios is 1.05% per month with the OLS t-statistic of 2.05 and the
Newey-West t-statistic of 1.91, implying that winner stocks on average generate economically
and statistically higher returns than loser stocks. In addition to the average raw returns,

Table I of the internet appendix presents the CAPM alpha from the regression of Winner-

1 Following Jegadeesh and Titman (1993), the momentum variable for each stock in month t is de ned as
the cumulative return on the stock over the previous 11 months starting 2 months ago, i.e., the cumulative
return from month t — 12 to month t — 2.
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Loser portfolio return difference on a constant and the excess market return. The CAPM
alpha for the long-short momentum portfolio is 1.33% per month with the OLS t-statistic of
2.67 and the Newey-West t-statistic of 2.82. This economically and statistically significant
alpha indicates that the static CAPM does not explain the momentum effect for the 1990-
2012 period.

Similar to the size and value effects, the industry effect in the U.S. equity market is
statistically weak over the past two decades. The average raw and risk-adjusted return
differences between the high-return (HiTech) and low-return (Telcm) industry portfolios are
statistically insignificant for the sample period 1990-2012.

Earlier studies starting with Fama and French (1992, 1993) provide evidence for the
significant size and value premiums for the post-1963 period. Some readers may find the
insignificant size and value premiums for the 1990-2012 period controversial. Hence, in Table
I of the internet appendix, we examine the significance of size and book-to-market effects for
the longest sample period July 1926 - December 2012 and the subsample period July 1963
- December 2012. The results indicate significant raw return difference between the Value
and Growth portfolios for both sample periods and significant risk-adjusted return difference
(Alpha) only for the post-1963 period. Consistent with the findings of earlier studies, we find
significant raw return difference between the Small and Big stock portfolios for the 1926-2012
period, which becomes very weak for the post-1963 period. The CAPM Alpha (or abnormal
return) for the long-short size portfolio is economically and statistically insignificant for both

sample periods.

4 Estimation Methodology

Following Bali (2008) and Bali and Engle (2010), our estimation approach proceeds in steps.

1) We take out any autoregressive elements in returns and VRP and estimate univariate

GARCH models for all returns and VRP.
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2) We construct standardized returns and compute bivariate DCC estimates of the cor-
relations between each portfolio and the market and between each portfolio and shock

to VRP using the bivariate likelihood function.

3) We estimate the expected return equation as a panel with the conditional covariances
as regressors. The error covariance matrix specified as seemingly unrelated regression
(SUR). The panel estimation methodology with SUR, takes into account heteroskedas-
ticity and autocorrelation as well as contemporaneous cross-correlations in the error

terms.

The following subsections provide details about the estimation of time-varying covariances
and the estimation of time-series and cross-sectional relation between expected returns and

risk and uncertainty.

4.1 Estimating Time-Varying Conditional Covariances

We estimate the conditional covariance between excess returns on equity portfolio I and

the market portfolio m based on the mean-reverting dynamic conditional correlation (DCC)

model:
Rit1= o+ iRis+"is1 (11)
Rm,t+1 = 81 + TRm,t + I'm,t+l (12)
E: ["itﬂ} = 1‘2,t+1 = é+ init + ; iz,t (13)
E: [Hgn,t+1] = Tzn,,t+1 = o+ Tnfn,t + 3 72n,t (14)
E. ["Z‘7t+1"m,t+1] = imt+l = imt+l T g+l myt+l (15)
Qim,t+1 . - woow _ _
im,t+1 — ) qim,t+1 = ymtag: ( it " omyt zm) +az- (qim,t - zm) (16)

\/qii,t+l : qmm,t+l

where R; ;41 and R,;, 1+1 denote the time (t+1) excess return on equity portfolio i and the mar-

ket portfolio m over a risk-free rate, respectively, and E, [-] denotes the expectation operator
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conditional on time t information. 2, ; is the time-t expected conditional variance of R; 441,

ﬁ%tﬂ is the time-t expected conditional variance of R, ;+1, and ;;, s+1 is the time-t expected

conditional covariance between R;;+1 and Ry, 441, im+1 = Qim,t+17/Tii t+1 * Qmm,t+1 18 the
time-t expected conditional correlation between R;;+1 and R, ;+1, and 7, is the uncondi-
tional correlation. To ease the parameter convergence, we use correlation targeting assuming
that the time-varying correlations mean reverts to the sample correlations 7,,.

We estimate the conditional covariance between the excess return on each equity portfolio

I and the innovation in the variance risk premia VRP, ;ygp, using an analogous DCC

model:
Ritv1= o+ 1Rt +"it+1 (17)
VRP VRP .
VRP = 0 + 1 VRP; + VRP+1 (18)
n2 — 2 1 in2 i 2
E: [ i,t+1} = vl ot 1ax T o2 id (19)
"2 _ 2 _ VRP , VRPw2 VRP 2
E: | VRP,t+1} = VRpp+1= 0 T 1 VrRPt T 2 VRPt (20)
Ei"it+1"VEPt+1] = iVRPI+1 = iVRPi+1° it+l° VRPi+1 (21)
_ 0i,v RPt+1
i VRPi+1 = ;
VUiit+1 - QVRPt+1
Gvepier = avee+ai-("ii-"vert — vep)+ a2 (Qiveer — i VEP) (22)

ShOCk'

where ; yrpt+1 1s the time-t expected conditional covariance between R; ;41 and V RP;2
. vRP+1 18 the time-t expected conditional correlation between R; ;41 and V RPtithCk. We
use the same DCC model to estimate the conditional covariance between the market portfolio
m and the shock to the variance risk premia VRP, ,, vrp .
Equations (17), (18), and (21) indicate that the shock to variance risk premia is obtained

from an autoregressive of order one process. Instead of using the change in the variance risk

premia, AVRP =V RP,+; — VRP;, that restricts XRP =0and [#’ =1, we use a more
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shock

general econometric specification to generate V RPSEOCK e, VE

P and VE? are estimated
using the AR(1) specification in equation (18).

We estimate the conditional covariances of each equity portfolio with the market portfolio
and with VRPSBOCK yging the maximum likelihood method described in the internet ap-
pendix (Section B). Then, as discussed in the following section, we estimate the time-series
and cross-sectional relation between expected return and risk and uncertainty as a panel
with the conditional covariances as regressors.

At an earlier stage of the study, we use 10 equity portfolios and estimate in one step the
time-varying conditional correlations as well as the parameters of time-varying conditional
mean in a Multivariate GARCH-in-mean framework. To ease the parameter convergence,
we use correlation targeting assuming that the time-varying correlations mean reverts to the
sample correlations. To reduce the overall time of maximizing the conditional log-likelihood,
we first estimate all pairs of bivariate GARCH-in-mean model and then use the median values
of A, B, a; and a;, as starting values along with the bivariate GARCH-in-mean estimates of
variance parameters ( o; 1; 2). Even after going through these steps to increase the speed
of parameter convergence, it takes a long time to obtain the full set of parameters in the
Multivariate GARCH-in-mean model. Similar to the findings of Bali and Engle (2010), the
results from the one-step estimation of 10 equity portfolios turned out to be similar to those

obtained from the two-step estimation procedure.?

2Bali and Engle (2010) also estimate the risk aversion coe cient in two steps; rst they obtain the
conditional covariances with DCC and then they use the covariance estimates in the panel regression with a
common slope coe cient. In this setting, since the covariance matrices implied by the DCC model are not
used in estimating risk premia or in computing their standard errors, a common worry in testing asset pricing
models is that time-varying covariances are measured with error. Using di erent samples, they show that
the signi cance of measurement errors in covariances is small. Hence, the one-step and two-step estimation
procedures generate similar slope coe cients and standard errors.
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4.2 Estimating Risk-Uncertainty-Return Tradeo

Given the conditional covariances, we estimate the portfolio-specific intercepts and the com-

mon slope estimates from the following panel regression:

Ritri = i+ A-COV (RiasiRyies) + B - Covi (Riass VRPEROH) 470y (23)

Ripet = m+A-Var (Ru) + B - Cov (Rut; VRPEC®) 7 (24)

where CoV; (R; t+1; Ry s+1) is the time-t expected conditional covariance between the ex-
cess return on portfolio i (R;;+1) and the excess return on the market portfolio (R, +1),

Cov, (Ri,Hl;VRPtS;thCk> is the time-t expected conditional covariance between the ex-

cess return on portfolio i and the innovation in the variance risk premia (V RPtS}lOCk),
Cov, (Rm,Hl;V RPtSﬂOCk> is the time-t expected conditional covariance between the ex-
cess return on the market portfolio m and the variance risk premia (VRPSEOCK) and
Var; (R, +1) is the time-t expected conditional variance of excess returns on the market
portfolio.

We estimate the system of equations in (23)-(24) using a weighted least square method
that allows us to place constraints on coefficients across equations. We compute the t-
statistics of the parameter estimates accounting for heteroskedasticity and autocorrelation
as well as contemporaneous cross-correlations in the errors from different equations. The es-

timation methodology can be regarded as an extension of the seemingly unrelated regression

(SUR) method, the details of which are in the internet appendix (Section C).

5 Empirical Results

In this section we first present results from the 10 decile portfolios of size, book-to-market,
momentum, and industry. Second, we discuss the economic significance of the two-factor con-
ditional asset pricing model at the market level. Finally, we provide a battery of robustness

checks.
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5.1 Ten Decile Portfolios of Size, Book-to-Market, Momentum,
and Industry

The common slopes and the intercepts are estimated using the monthly excess returns on the
10 value-weighted size, book-to-market, momentum, and industry portfolios for the sample
period January 1990 to December 2012. The aggregate stock market portfolio is measured
by the value-weighted CRSP index. Table 1 reports the common slope estimates (A; B), the
abnormal returns or conditional alphas for each equity portfolio ( ;) and the market portfolio
( m), and the t-statistics of the parameter estimates. The last two rows, respectively, show
the Wald statistics; Wald; from testing the joint hypothesis Hy: 1 == 1= ,, =0,
and Wald, from testing the equality of conditional alphas for high-return and low-return
portfolios (Small vs. Big; Value vs. Growth; Winner vs. Loser; and HiTec vs. Telem). The
p-values of Wald; and Wald, statistics are given in square brackets.

The risk aversion coefficient is estimated to be positive and highly significant for all
equity portfolios: A = 2:77 with a t-statistic of 2.83 for the size portfolios, A = 2:56 with a
t-statistic of 2.66 for the book-to-market portfolios, A = 2:23 with a t-statistic of 2.08 for the
momentum portfolios, and A = 3:48 with a t-statistic of 2.38 for the industry portfolios.*?
These results imply a positive and significant relation between expected return and market
risk.}* Consistent with the conditional asset pricing specification, the uncertainty aversion
coefficient is also estimated to be positive and highly significant for all equity portfolios:
B = 0:0037 with a t-statistic of 3.54 for the size portfolios, B = 0:0059 with a t-statistic
of 2.58 for the book-to-market portfolios, B = 0:0030 with a t-statistic of 2.17 for the
momentum portfolios, and B = 0:0062 with a t-statistic of 2.85 for the industry portfolios.

These results indicate a significantly positive market price of uncertainty in the aggregate

30ur risk aversion estimates ranging from 2.23 to 3.48 are very similar to the median level of risk aversion,
2.52, identi ed by Bekaert, Engstrom, and Xing (2009) in a di erent model.

14 Although the literature is inconclusive on the direction and signi cance of a risk-return tradeo , some
studies do provide evidence supporting a positive and signi cant relation between expected return and
risk (e.g., Bollerslev, Engle, and Wooldridge (1988), Ghysels, Santa-Clara, and Valkanov (2005), Guo and
Whitelaw (2006), Guo and Savickas (2006), Lundblad (2007), Bali (2008), and Bali and Engle (2010)).
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stock market. Equity portfolios with higher sensitivity to increases in the variance risk
premia are expected to generate higher returns next period.

One implication of the conditional asset pricing model is that the intercepts ( ;, ) are
not jointly different from zero assuming that the conditional covariances of equity portfolios
with the market portfolio and the variance risk premia have enough predictive power for
expected future returns. To examine the empirical validity of the conditional asset pricing
model, we test the joint hypothesis Hp: 1 == 10= ,, =0. As presented in Table 1,
the Wald; statistics for the size, book-to-market, and industry portfolios are, respectively,
16.40, 10.43, and 14.36 with the corresponding p-values of 12.69%, 49.22%, and 21.37%. The
significantly positive risk and uncertainty aversion coefficients and the insignificant Wald,
statistics indicate that the two-factor model introduced in the paper is empirically sound.

We also investigate whether the model explains the return spreads between Small and
Big; Value and Growth; and HiTec and Telcm portfolios. The last row in Table 1 reports
Wald, statistics from testing the equality of conditional alphas for high-return and low-return
portfolios (Hp: 1 = 10). These intercepts capture the monthly abnormal returns on each
portfolio that cannot be explained by the conditional covariances with the market portfolio
and the variance risk premia.

The first column of Table 1 shows that the abnormal return on the small-stock portfolio
is 1 = 0:53% per month with a t-statistic of 1.32, whereas the abnormal return on the big-
stock portfolio is 19 = 0:21% per month with a t-statistic of 0.70. The Wald, statistic from
testing the equality of alphas on the Small and Big portfolios is 1.07 with a p-value of 30.09%,
indicating that there is no significant risk-adjusted return difference between the small-stock
and big-stock portfolios. The second column provides the conditional alphas on the Value
and Growth portfolios: 1 = 0:39% per month with a t-statistic of 1.01, and 19 = 0:78%
per month with a t-statistic of 1.89. The Wald, statistic from testing Hg: 1 = 10 is 1.68

with a p-value of 19.49%, implying that the conditional asset pricing model explains the
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value premium, i.e., the risk-adjusted return difference between value and growth stocks is
statistically insignificant. The last column shows that the conditional alphas on HiTec and
Telem portfolios are, respectively, 0.28% and 0.12% per month, generating a risk-adjusted
return spread of 16 basis points per month. As reported in the last row, the Wald, statistic
from testing the significance of this return spread is 0.20 with a p-value of 65.47%, yielding
insignificant industry effect over the sample period 1990-2012.

We examine the empirical validity of the conditional asset pricing model for momentum
portfolios by testing the hypothesis that the conditional alphas on decile portfolios are jointly
zero. As reported in Table 1, the Wald; statistic is 22.15 (p-value = 2.33%), implying that
the conditional covariances of momentum portfolios with the market and the variance risk
premia do not capture the entire time-series and cross-sectional variation in expected returns
of momentum portfolios. We also investigate whether the two-factor model explains the
return spreads between Winner and Loser portfolios. The Wald, statistic from testing the
equality of conditional alphas, 1 = 1, is 4.98 with a p-value of 2.56%.

Overall, the DCC-based conditional covariances capture the time-series and cross-sectional
variation in returns on the size, book-to-market, and industry portfolios because the essential
tests of the conditional asset pricing model are passed: (i) significantly positive risk-return
and uncertainty-return tradeoffs; (ii) the conditional alphas are jointly zero; and (iii) the
conditional alphas for high-return and low-return portfolios are not statistically different
from each other. However, the statistically significant risk-adjusted return spread ( 10— 1)
between winner and loser portfolios implies failure of the conditional asset pricing model in

explaining the momentum effect.

5.2 Economic Signi cance at the Market Level

In this section, we test whether the risk-return (A) and uncertainty-return (B) coefficients

are sensible and whether the uncertainty measure is associated with macroeconomic state
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variables.
Specifically, we rely on equation (24) and compute the expected excess return on the
market portfolio based on the estimated prices of risk and uncertainty as well as the sample

averages of the conditional covariance measures:
E/[Rns+1] = m+A-Var,(Rym1)+B - Cov, (Rm,m; Y, Rpg}iock) (25)

where ,, = 0:0026, A = 2:77, and B = 0:0037 for the 10 size portfolios; ,, = 0:0042,
A = 2:56, and B = 0:0059 for the 10 book-to-market portfolios; ,, = 0:0032, A = 2:23, and
B = 0:0030 for the 10 momentum portfolios; and ,, = 0:0026, A = 3:48, and B = 0:0062
for the 10 industry portfolios (see Table 1). The sample averages of Var; (R,,+1) and
Cov, (Rm7t+1;V RPtﬁ}iOCk> are 0.002069 and -0.7426, respectively.’® These values produce
E: [Rint+1] = 0:56% per month when the parameters are estimated using the 10 size port-
folios, E;[Rmt+1] = 0:51% per month when the parameters are estimated using the 10
book-to-market portfolios, E;[R,,+1] = 0:56% per month when the parameters are esti-
mated using the 10 momentum portfolios, and E; [R,,, 1+1] = 0:52% when the parameters are
estimated using the 10 industry portfolios.

To evaluate the performance of our model with risk and uncertainty, we calculate the
sample average of excess returns on the market portfolio, which is a standard benchmark
for the market risk premium. The sample average of R,,;+1 is found to be 0.53% per
month for the period January 1990 — December 2012, indicating that the estimated market
risk premiums of 0.51% — 0.56% are very close to the benchmark. This again shows solid
performance of the two-factor model introduced in the paper.

To further appreciate the economics behind the apparent connection between the variance
risk premium (VRP) and the time-series and cross-sectional variations in expected stock

returns, Figure 2 plots the VRP together with the monthly growth rate of real GDP per

5The negative value for the conditional covariance of the market return with the VRP factor is consistent
with the consumption-based asset pricing model and the negative contemporaneous correlation between the
market return and the VRP factor reported by Bollerslev, Tauchen, and Zhou (2009).
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capita. As seen from the figure, there is a tendency for VRP to rise in the month before a
decline in GDP, while it typically narrows ahead of an increase in GDP. Indeed, the sample
correlation equals -0.19 between lag VRP and current GDP (as first reported in Bollerslev

et al., 2009), with a standard error of 0.06 (p-value = 0.13%). In other words, VRP as



for heteroskedasticity and autocorrelation for each series and the cross-correlations among
the error terms. As shown in the first row of Table 2, the risk aversion coeflicient is estimated
to be positive and highly significant for the pooled dataset: A = 3:16 with a t-statistic of
5.39, implying a positive and significant relation between expected return and market risk.
Similar to our earlier findings, the uncertainty aversion coefficient is also estimated to be
positive and highly significant for the joint estimation: B = 0:0037 with a t-statistic of 5.51.
These results indicate a significantly positive market price of uncertainty when all portfolios
are combined together. Equity portfolios with higher sensitivity to increases in VRP are
expected to generate higher returns next period.

The Wald; and Wald; statistics reported in Table 2 indicate that the conditional alphas on
the size, book-to-market, and industry portfolios are jointly zero and the conditional alphas
for high-return (small, value, HiTech) and low-return (big, growth, Telcm) portfolios are not
statistically different from each other. Hence, the DCC-based conditional covariances cap-
ture the time-series and cross-sectional variation in returns on the size, book- to-market, and
industry portfolios. Similar to our earlier findings, the two-factor model with risk and uncer-
tainty provides both statistical and economic success in explaining stock market anomalies,
except momentum.

As discussed in Section 4.1, we have so far used a more general econometric specification
to generate V RPtﬁthCk instead of using the change in the variance risk premia. As shown
in equation (18), the shock to variance risk premia is obtained from an autoregressive of
order one process. In this section, we use a simpler measure of V RPtS;rhlOCk = AVRP,4; =
VRP:; — VRP, | that restricts §#” = 0 and %7 =1 in equation (18). As presented
in Table 3, the results from the change in VRP are very similar to those reported in Table
2. The risk aversion and uncertainty aversion coefficients are estimated to be positive and

highly significant: A = 3:03 with a t-statistic of 4.65 and B = 0:0039 with a t-statistic of

3.41, indicating significantly positive market prices of risk and uncertainty. Consistent with
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our earlier findings, the Wald; and Wald, statistics reported in Table 3 indicate that the
two-factor model with risk and uncertainty provides both statistical and economic success
in explaining stock market anomalies, except momentum.

In Section D of the internet appendix, we provide a battery of robustness checks. There
appears to be some controversy in the econometrics literature around the consistency of
maximum likelihood parameter estimates generated by the DCC models.® To address this
potential concern, in Section D.1 of the internet appendix, we use an alternative econometric
methodology and estimate the conditional covariances based on the generalized conditional
covariance (GCC) specification of Bali (2008). Table II of the internet appendix shows that
the results from the GCC model are very similar to those reported in the paper. Second,
we estimate the DCC-based conditional covariances using the Asymmetric GARCH model
of Glosten, Jagannathan, and Runkle (1993). Table III of the internet appendix shows that
our main findings from the Asymmetric GARCH model are very similar to those reported in
Table 1.1 Third, we examine whether the model’s performance changes when we use a larger
cross-section of industry portfolios. Table IV of the internet appendix shows a significantly
positive market price of uncertainty in the cross-section of large number of equity portfolios;
portfolios with higher correlation with the shock to VRP generate higher returns next month
for the value-weighted 17-, 30-, 38-, 48-, and 49-industry portfolios. Also, the differences in
conditional alphas are both economically and statistically insignificant, showing that the two-
factor model introduced in the paper provides success in explaining industry effects. Fourth,
we provide robustness analysis when controlling for popular macroeconomic and financial
variables. Table V of the internet appendix indicates that after controlling for variables

associated with business conditions, the time-varying exposures of equity portfolios to the

165ee Aielli (2013), Caporin and McAleer (2013), and the proposed solution in Noureldin, Shephard, and
Sheppard (2014).

17 An alternative approach to estimating risk-return coe cient for the stock market portfolio is introduced
by Ghysels, Santa-Clara, and Valkanov (2005). An application of the mixed data sampling (or MIDAS)
approach to conditional covariances in a panel data setting represents an important direction for future
research (see Ghysels, Sinko, and Valkanov, 2006; Andreou, Ghysels, and Kourtellos, 2010).
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market and uncertainty factors carry positive risk premiums. Fifth, we provide results from
individual stocks trading at the NYSE, AMEX, and NASDAQ. Table VI of the internet
appendix reports a significantly positive market price of uncertainty for large and liquid
stocks trading in the U.S. equity market. Sixth, we test whether the predictive power of the
variance risk premia is subsumed by the market illiquidity and/or credit risk. Table VII of
the internet appendix clearly shows that controlling for the market illiquidity and default
risk individually and simultaneously does not influence the significant predictive power of the
conditional covariances of portfolio returns with the market risk and VRP factors. Finally, we
test whether the conditional asset pricing model with risk and uncertainty outperforms the
conditional CAPM in terms of statistical fit. Table VIII of the internet appendix presents
the realized monthly average excess returns on equity portfolios and the cross-section of
expected excess returns generated by the one-factor conditional CAPM and the two-factor
conditional asset pricing model. Clearly the newly proposed model with risk and uncertainty

provides much more accurate estimates of expected returns on equity portfolios.

6 Cross-Sectional Relation between VRP-beta and Ex-
pected Returns

In this section, we investigate the cross-sectional asset pricing performance of our model
by testing the significance of a cross-sectional relation between expected returns on equity
portfolios and the portfolios’ conditional covariances with V RPS1OCK  Following Bali (2008)
and Campbell, Giglio, Polk, and Turley (2014), we use the size and book-to-market portfolios
of Kenneth French as test assets. First, we estimate the DCC-based conditional covariances of
100 Size/BM portfolios with V RP shock ;1q then for each month we form quintile portfolios
sorted based on the portfolios’ conditional covariances (or betas) with V Rpshock  gipce

P shock

the conditional variance of VR is the same across portfolios, we basically sort equity
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portfolios based on their VRP-beta:

cov [Rim; v Rpgﬁockmt] o0
; 26

VRP =
7 var [V RPtSEIlOCkmt]

where VRP/ is the VRP-beta of portfolio i in month t, cov |:Rz'7t+]_; % RPti}iOCk]Qt] is the
conditional covariance of portfolio 1 with V RPtSJrthCk estimated using equation (21), and
var |V RPtS;thCk\Qt] is the conditional variance of V RPSEOCK which is constant in the cross-
section of equity portfolios.

Ang, Hodrick, Xing, and Zhang (2006) test whether the exposure of individual stocks to
changes in market volatility predicts cross-sectional variation in future stock returns. They
first estimate the exposure of individual stocks to changes in the S&P 100 index option
implied volatility (VXO). Then, they sort stocks into quintile portfolios based on these
implied volatility betas. They find a negative cross-sectional relation between the volatility
betas and future stock returns, that is, stocks with higher (lower) exposure to changes in the
VXO generate lower (higher) returns in the next month. Motivated by Ang et al. (2006),
we test whether the predictive power of V RPi’f?a remains intact after controlling for the
exposure of equity portfolios to changes in aggregate stock market volatility.

In this section, following Ang et al. (2006), we use the VXO in the estimation of the
variance risk premia. We have so far used high-frequency (intraday) market returns to
estimate the expected physical variance that enters the VRP, but we use low frequency
returns on the market and equity portfolios to estimate the conditional covariances. To be
consistent with the estimation of market variance, VRP, and conditional covariances, in this
section, we define monthly realized variance of the market as the sum of squared daily returns
on the S&P500 index in a month. Then, we estimate the expected physical variance by
regressing one-month-ahead realized market variance on the lagged realized market variance

and VXO. Since the monthly data on VXO are available from January 1986, our results in

this section are based on the sample period January 1986 to December 2012.
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We start cross-sectional analysis by performing univariate portfolio sorts based on V RP;??“.
Then, we present evidence from multivariate cross-sectional regressions with market beta,
Vv RPiljfm, and V XOi?ftm.

Table 4 presents the average excess monthly returns of quintile portfolios that are formed
by sorting the 100 Size/BM portfolios based on their VRP-beta. Q1 (Low V RP") is the
quintile portfolio of Size/BM portfolios with the lowest VRP-beta during the past month,
and Q5 (High VRP) is the quintile portfolio of Size/BM portfolios with the highest
VRP-beta during the previous month. As shown in the first column of Table 4, the average
excess return increases from 0.02% per month to 0.70% per month as we move from Q1 to
Q5, generating an average return difference of 0.68% per month between Quintile 5 (High
V RP%) and Quintile 1 (Low V RP®). This return difference is statistically significant
with a Newey-West (1987) t-statistic of 4.33. In addition to the average excess returns, Table
4 also presents the intercepts (Fama-French three-factor alphas, denoted by FF3) from the
regression of the average excess portfolio returns on a constant, the excess market return, a
size factor (SMB), and a book-to-market factor (HML), following Fama and French (1993).
As shown in the last row of Table 4, the difference in FF3 alphas between the High V RP ¢t
and Low V RP% portfolios is 0.69% per month with a Newey-West t-statistic of 4.99.

The last column of Table 4 presents the alpha of the return differential with respect to
a four-factor model, following Fama and French (1993) and Carhart (1997). Besides the
market, size, and book-to-market factors, it includes a fourth factor based on the return
differential between stocks in the highest and lowest momentum deciles. The reason for
including the fourth factor is to check whether the ability of V RPfft“ to predict returns
can be subsumed by the tendency of these equity portfolios to co-move with the momentum
factor.*® As shown in the last row of Table 4, the difference in Fama-French-Carhart four

factor alphas (denoted by FFC4) between the High V RP/$" and Low V RP s portfolios is

BSMB (small minus big), HML (high minus low), and MOM (winner minus loser) are described in and
obtained from Kenneth Frenchs data library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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0.68% per month with a Newey-West t-statistic of 4.09.

These results indicate that an investment strategy that goes long Size/BM portfolios in
the highest V RPiljtem quintile and shorts Size/BM portfolios in the lowest V RPilffm quintile
produces average raw and risk-adjusted returns of 8.16% to 8.28% per annum. These return
and alpha differences are economically and statistically significant at all conventional levels.

To determine whether the cross-sectional predictive power of VRP-beta is driven by the
outperformance of High V RP " portfolios and/or the underperformance of Low V RP %
portfolios, we compute the FF3 and FFC4 alpha of each quintile portfolio. As reported in
Table 4, FF3 alpha of Q1 is -0.10% per month (t-stat. = -0.37) and FFC4 alpha of Q1 is
-0.01% per month (t-stat. = -0.02), presenting economically and statistically insignificant
risk-adjusted return of the short leg of the arbitrage portfolio with Low VRP-beta. When
we look at the long leg of the arbitrage portfolio with High VRP-beta, the FF3 alpha of
Q5 is 0.59% per month with a t-statistic of 2.67 and FFC4 alpha of Q5 is 0.67% per month
with a t-statistic of 2.97. These economically and statistically significant FF3 and FFC4
alphas indicate that the significantly positive link between VRP-beta and the cross-section
of portfolio returns is driven by the outperformance of individual stocks with High VRP-beta.

We now examine the cross-sectional relation between VRP-beta, Market-beta and ex-
pected returns using the Fama and MacBeth (1973) regressions. We calculate the time-
series averages of the slope coefficients from the regressions of one-month-ahead portfo-
lio returns on the conditional covariances of portfolios with the market and VRP factors,
CoV; (Ri4+1;Rims+1) and Cov, (Ri’Hl;VRPtSEllOCk). The average slopes provide standard
Fama-MacBeth tests for determining whether the market and/or uncertainty factors on av-
erage have non-zero premiums. Monthly cross-sectional regressions are run for the following

asset pricing specification:
Ritv1 = or+ 16-Covy (Rie1;Risr1) + 20 - Covy <Ri,t+1; V RptsillOCk> + "1

where R; ;+1 is the excess return on portfolio 1 in month t+ 1, ;; and ,; are the monthly
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slope coefficients on Cov, (R; +1; Ryn4+1) and Cov, (Rz"t+1;v RPtS+thCk>, respectively. The

predictive cross-sectional regressions of R;;+1 are run on the time-t expected conditional
covariances of portfolios with the market and VRP factors.

Table 5 presents the time series averages of the slope coefficients ( 1, ) over the 324
months from January 1986 to December 2012 for the 100 Size/BM portfolios. The bi-
variate regression results produce a positive and statistically significant relation between
Cov; (Ri,ﬁl; Vv RPtSEllOCk> and the cross-section of portfolios returns. The average slope, o,
is estimated to be 0.0250 with a Newey-West t-statistic of 2.94 for the 100 Size/BM portfo-
lios. We also find a significantly positive link between market beta and the cross-section of
expected returns. Specifically, the average slope, 1, is found to be 3.38 with a t-statistic of
2.01 for the 100 Size/BM portfolios.

We now test whether significantly positive link between VRP-beta and expected returns
remains intact after controlling for the negative market volatility risk premium. For each
month from January 1986 to December 2012, we estimate the following cross-sectional re-

gression specification:

Rite1 = or+ 1:-CoVi (Rise1;Rimte1) + 20 - Covy (Ri,t+1; \% RPtSJrthCk>)
. shock
+ 3:-Covy (Rj41; VX0 + i1

The second row in Table 5 reports the average slope coefficients ( 1, 2, 3) for the 100
Size/BM portfolios. Similar to our finding from the bivariate regression, » is estimated to
be positive; , = 0:0292 with a t-statistic of 3.61, implying a significantly positive uncertainty
premium. Consistent with Ang et al. (2006), the average slope on implied volatility beta,
Cov, (Ri,Hl;VXO,fSPlOCk» is estimated to be negative; 3 = —0:0163 with a t-statistic of
-1.87. Interestingly, the average slope on market beta, Cov; (R; t+1; Ry t+1), is estimated to
be positive but statistically insignificant; ; = 0:5099 with a t-statistic of 0.26. Overall, the
results in Table 5 indicate that after controlling for the positive market risk premium and the

negative market volatility risk premium, the positive link between VRP-beta and expected
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returns remains highly significant.

7 Conclusion

Although uncertainty is more common in decision-making process than risk, relatively little
attention is paid to the phenomenon of uncertainty in empirical asset pricing literature. This
paper focuses on economic uncertainty and augments the original consumption-based asset
pricing models to introduce a two-factor conditional asset pricing model with time-varying
market risk and uncertainty. According to the augmented asset pricing model, the premium
on equity is composed of two separate terms; the first term compensates for the market risk
and the second term representing a true premium for economic uncertainty. We use the
conditional asset pricing model to test whether the time-varying conditional covariances of
equity returns with the market and uncertainty factors predict their future returns.

Since information about economic uncertainty is too imprecise to measure with avail-
able data, we have to come up with a proxy for uncertainty that should be consistent with
the investment opportunity set of risk-averse investors. Following Zhou (2010), we measure
economic uncertainty with the variance risk premium (VRP) of the aggregate stock market
portfolio. Different from earlier studies, we provide empirical evidence that VRP is indeed
closely related to economic and financial market uncertainty. Specifically, we generate sev-
eral proxies for uncertainty based on the macroeconomic variables, return distributions of
financial firms, credit default swap market, and investors’ disagreement about individual
stocks. We show that VRP is highly correlated with all measures of uncertainty.

Based on the two-factor asset pricing model, we investigate whether the market prices of
risk and uncertainty are economically and statistically significant in the U.S. equity market.
Using the dynamic conditional correlation (DCC) model of Engle (2002), we estimate equity
portfolios” conditional covariances with the market portfolio and VRP factors and then test

whether these dynamic conditional covariances predict future returns on equity portfolios.
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The empirical results from the size, book-to-market, momentum, and industry portfolios
indicate that the DCC-based conditional covariances of equity portfolios with the market and
VRP factors predict the time-series and cross-sectional variation in stock returns. We find
the risk-return coefficients to be positive and highly significant, implying a strongly positive
link between expected return and market risk. Similarly, the results indicate a significantly
positive market price of uncertainty. That is, equity portfolios that are highly correlated
with uncertainty (proxied by VRP) carry a significant premium relative to portfolios that
are uncorrelated or minimally correlated with VRP. In addition to the size, book-to-market,
momentum and industry portfolios, we investigate the significance of risk, uncertainty, and
return tradeoffs using the largest 500 stocks trading at NYSE, AMEX, and NASDAQ as
well as stocks in the S&P 500 index. Consistent with our findings from equity portfolios, we
find significantly positive market prices of risk and uncertainty for large stocks trading in
the U.S. equity market.

We also examine whether the conditional covariances with VRP could be picking up
the covariances with market volatility, market illiquidity, and default risk. We find that
the significantly positive link between uncertainty and future returns remains intact after
controlling for market volatility, liquidity, and credit risk.

Finally, we investigate the cross-sectional asset pricing performance of our model using
the long-short equity portfolios and the Fama-MacBeth regressions. The results indicate
that the annual average raw and risk-adjusted returns of the equity portfolios in the highest
VRP-beta quintile are about 8 percent higher than the annual average returns of the equity
portfolios in the lowest VRP-beta quintile. After controlling for the market, size, book-
to-market, and momentum factors of Fama-French-Carhart, the positive relation between
VRP-beta and the cross-section of portfolio returns remains economically and statistically
significant. Overall, we conclude that the time-varying exposures of equity portfolios to the

variance risk premia predict the time-series and cross-sectional variation in stock returns.
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Table 1 Ten Decile Size, Book-to-Market, Momentum, and Industry Portfolios

This table reports the portfolio-speci c intercepts and the common slope estimates from the following panel regression:

Ritv1 = ai+A Covy(Rig+1, Rmi+1) + B Covi Rjyv1, VRPSOK o)

Rmiv:i = om+A Vary(Rmi+1) + B Covy R w1, VRPSOK o)

where Covy (R; t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on portfolio ¢ (R; ¢+1) and
the excess return on the market portfolio (R, t+1 ), Cove Rj t+1, VRPED{’CK is the time-¢ expected conditional covariance

between the excess return on portfolio i and the shock to the variance risk premia (V RPSNOCK) Cov, R, 141,V RPSHOCK

is the time-¢ expected conditional covariance between the excess return on the market portfolio m and the VRPE‘D{’CK, and
Vary (Rm,t+1) is the time-t expected conditional variance of excess returns on the market portfolio. The parameters and
their t¢-statistics are estimated using the monthly excess returns on the market portfolio and the ten decile size, book-to-
market,momentum, and industry portfolios for the sample period from January 1990 to December 2012. The alphas («;) are
reported for each equity portfolio and the ¢-statistics are presented in parentheses. The ¢-statistics are adjusted for heteroskedas-
ticity and autocorrelation for each series and cross-correlations among the portfolios. The last four rows, respectively, show
the common slope coe cients (A and B), the Wald; statistics from testing the joint hypothesis Hp : a1 = a2 = ...amm =0,
and the Wald; statistics from testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big; Value vs.
Growth; Winner vs. Loser; and HiTec vs. Telcm). The p-values of Wald, and Wald; statistics are given in square brackets.

Size Ay Oim BM iy O MOM QO Industry iy O
Small 0.0053 Growth 0.0039 Loser -0.0038 NoDur 0.0053
(1.32) (1.01) (-0.61) (2.05)
2 0.0041 2 0.0046 2 0.0012 Durbl 0.0020
(0.92) (1.39) (0.26) (0.40)
3 0.0047 3 0.0054 3 0.0024 Manuf 0.0051
(1.17) (1.67) (0.62) (1.48)
4 0.0037 4 0.0062 4 0.0038 Enrgy 0.0060
(0.96) (1.87) (1.15) (1.75)
5 0.0047 5 0.0057 5 0.0032 HiTec 0.0028
(1.24) (1.83) (1.04) (0.52)
6 0.0045 6 0.0050 6 0.0033 Telem 0.0012
(1.28) (1.51) (1.13) (0.33)
7 0.0048 7 0.0059 7 0.0043 Shops 0.0039
(1.40) (1.92) (1.53) (1.17)
8 0.0042 8 0.0056 8 0.0056 Hith 0.0047
(1.21) (1.80) (1.96) (1.57)
9 0.0042 9 0.0067 9 0.0039 Utils 0.0046
(1.31) (2.02) (1.28) (1.83)
Big 0.0021 Value 0.0078 Winner 0.0075 Other 0.0025
(0.70) (1.89) (1.74) (0.68)
Market 0.0026 Market 0.0042 Market 0.0032 Market 0.0026
(0.83) (1.25) (0.98) 0.77)
A 2.7712 A 2.5585 A 2.2345 A 3.4834
(2.83) (2.66) (2.08) (2.38)
B 0.0037 B 0.0059 B 0.0030 B 0.0062
(3.54) (2.58) (2.17) (2.85)

Waldy 16.40 Waldy 10.43 Waldy 22.15 Waldy 14.36

[12.69%)] [49.22%)] [2.33%] [21.37%)]
Wald; 1.07 Wald; 1.68 Wald; 4.98 Waldy 0.20

[30.09%] [19.49%P5 [2.56%] [65.47%]




Table 2 Results from Pooled Dataset

This table reports the portfolio-speci ¢ intercepts and the common slope estimates from the following panel
regression:

Rit+1 = i+A-Cov% (Rit+1;Rmt+1) +B -Cow (Ri;t +1,V RPtSPPCk) + it 1
Rmt+1 = m+A-Var (Rmt+1)+B - Cov (Rm;t +1;VRP§D{)CK) e

where Cov; (Rit +1; Rm:t +1) is the time-t expected conditional covariance between the excess return on
portfolio i (Rix +1) and the excess return on the market portfolio (R +1 ), Covt (Rit +1;V RPtSI‘PCk is the
time-t expected conditional covariance between the excess return on portfolio i and the shock to the variance
risk premia (V RPSNOCK) coy, (Rm;t 1V RPtsff’Ck) is the time-t expected conditional covariance between

the excess return on the market portfolio m and VRPtSI‘PCk, and Var; (Rmt +1) is the time-t expected
conditional variance of excess returns on the market portfolio. The parameters and their t-statistics are
estimated using the monthly excess returns on the market portfolio and the pooled dataset of ten decile size,
book-to-market, momentum, and industry portfolios (total of 40 equity portfolios) for the sample period from
January 1990 to December 2012. The t-statistics are adjusted for heteroskedasticity and autocorrelation for
each series and cross-correlations among the portfolios. Table show the common slope coe cients (A and
B), the Wald; statistics from testing the joint hypothesis Hp : 1 = 2 = :: n = 0, and the Wald,
statistics from testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big; Value
vs. Growth; Winner vs. Loser; and HiTec vs. Telcm). The p-values of Wald; and Wald, statistics are given
in square brackets.

A 3.1557

(5.39)

B 0.0037

(5.51)

Size Waldq 9.80
[45.83%)]

Small vs. Big Wald, 1.06
[30.43%]

Book-to-Market Waldy 4.93
[89.56%]

Value vs. Growth Wald, 0.89
[34.55%]

Momentum Wald; 19.28
[3.69%]

Winner vs. Loser Walds, 5.50
[1.91%]

Industry Wald, 11.27
[33.65%]

HiTec vs. Telem Wald- 0.31
[57.99%)]




Table 3 Results from the Change in the Variance Risk Premia

This table reports the portfolio-speci ¢ intercepts and the common slope estimates from the following panel
regression:

Rit+1 = i +A-Cov (Rit+1;Rmt+1) +B -Cov (Rix +1; VRPi+1) + "ix +1
Rmt+1 = m+A-Var (Rmt+1) +B -Covt (Rmt+1; VRPi41) +"mit+1

where Cov; (Rit +1; Rm: +1) IS the time-t expected conditional covariance between the excess return on
portfolio i (Rit +1) and the excess return on the market portfolio (Rm:t +1 ), Covt (Rit +1; V RPt4+1) is the
time-t expected conditional covariance between the excess return on portfolio i and the change in the variance
risk premia ( VRPi+1), Covk (Rm:t +1; V RPi+1) is the time-t expected conditional covariance between the
excess return on the market portfoliom and V RP;+1, and V ar; (Rt +1) is the time-t expected conditional
variance of excess returns on the market portfolio. The parameters and their t-statistics are estimated using
the monthly excess returns on the market portfolio and the pooled dataset of ten decile size, book-to-market,
momentum, and industry portfolios (total of 40 equity portfolios) for the sample period from January 1990
to December 2012. The t-statistics are adjusted for heteroskedasticity and autocorrelation for each series
and cross-correlations among the portfolios. Table show the common slope coe cients (A and B), the Wald;
statistics from testing the joint hypothesisHg: 1= > =:: n =0, and the Wald, statistics from testing
the equality of Alphas for high-return and low-return portfolios (Small vs. Big; Value vs. Growth; Winner
vs. Loser 03(and)-103Hi(T)83ecdvs. Tlcm( s.)-454(The)]TJ/F11 9.9626 Tf6 8.103 0 Td [pt



Table 4 Long-Short Equity Portfolios Sorted by VRP-beta

Quintile portfolios are formed every month from January 1990 to December 2012 by sorting 100 Size/BM
portfolios based on their VRP-beta (V RP®) over the past one month. Quintile 1 (Q1) is the portfolio
of Size/BM portfolios with the lowest V RPP¢® over the past one month. Quintile 5 (Q5) is the portfolio
of Size/BM portfolios with the highest V RPP¢® over the past one month. The table reports the average
excess monthly returns, the 3-factor Fama-French alphas (FF3 alpha), and the 4-factor Fama-French-Carhart
alphas (FFC4 alpha) on the VRP-beta sorted portfolios. The last row presents the di erences in monthly
returns and the di erences in alphas with respect to the 3-factor and 4-factor models between Quintiles 5 and
1 and the corresponding t-statistics. Average excess returns and risk-adjusted returns are given in monthly
percentage terms. Newey-West (1987) t-statistics are reported in parentheses.

Average Excess Return FF3 Alpha FFC4 Alpha

Q1 0.02 -0.10 -0.01
(0.06) (-0.37) (-0.02)

Q2 0.35 0.25 0.32
(1.34) (1.03) (1.25)

Q3 0.45 0.34 0.41
(1.77) (1.42) (1.66)

Q4 0.53 0.41 0.48
(2.12) (1.79) (2.02)

Q5 0.70 0.59 0.67
(2.94) (2.67) (2.97)

High-Low 0.68 0.69 0.68
(4.33) (4.99) (4.09)
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Figure 1 Variance Risk Premium Level and Change

This gure plots variance risk premium or the implied-expected variance di erence (top panel) and the
monthly change of variance risk premium change (bottom panel) for the S&P500 market index from January
1990 to December 2012. The variance risk premium is based on the realized variance forecast from lagged
implied and realized variances. The shaded areas represent NBER recessions.
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Figure 2 Variance Risk Premium and GDP Growth
The gure plots the growth rate of real GDP per capita (thin line) together with the variance risk premium

(thick line) from January 1990 to December 2012. Both of the series are standardized to have mean zero
and variance one. The shaded areas represent NBER recessions.
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Risk, Uncertainty, and Expected
Returns|internet Appendix



A Variance Risk Premium and Empirical Measurement

The central empirical variable of this paper, as a proxy for economic uncertainty, is the
market variance risk premium (VRP)|which is not directly observable but can be esti-
mated from the di erence between model-free option-implied variance and the conditional

expectation of realized variance.

A.1 Variance Risk Premium: De nition and Measurement

In order to de ne the model-free implied variance, 1eC;(T; K) denote the price of a European
call option maturing at time T with strike price K, and B(t; T) denote the price of a time
t zero-coupon bond maturing at timeT. As shown by Carr and Madan (1998) and Britten-
Jones and Neuberger (2000), among others, the market's risk-neut@lexpectation of the
return variance 2, conditional on the information set ¢, or the implied variancelV, at

time-t, can be expressed in a \model-free" fashion as a portfolio of European calls,

ZiC o t+1,- X~ C(tK)

. B (t;t +1)
IV, E° 2,j, =2 & dK; (A1)
0

which relies on an ever increasing number of calls with strikes spanning from zero to in nity.
This equation follows directly from the classical result in Breeden and Litzenberger (1978),
that the second derivative of the option call price with respect to strike equals the risk-
neutral density, such that all risk neutral moments payo can be replicated by the basic
option prices (Bakshi and Madan, 2000).

In order to de ne the actual return variance, letp; denote the logarithmic price of the
asset. The realized variance over the discreteto t + 1 time interval can be measured in a

\model-free" fashion by
X1 h iy
RViat Pol Pt ! t2+1 : (A2)
j=1



and Ebens, 2001; Barndor -Nielsen and Shephard, 2002), this \model-free" realized vari-
ance measure based on high-frequency intraday data o ers a much more accurate ex-post
observation of the true (unobserved) return variance than the traditional ones based on daily
or coarser frequency returns.

Variance risk premium (VRP) at time t is de ned as the di erence between the ex-ante
risk-neutral expectation and the objective or statistical expectation at time of the return

variance at timet + 1,
VRPI EQ t2+1j t EP t2+1j t (A3)

which is not directly observable in practice. To construct an empirical proxy for such a
VRP concept, one needs to estimate various reduced-form counterparts of the risk neutral
and physical expectations. In practice, the risk-neutral expectation® 2,j  is typically
replaced by the CBOE implied variance (VIX=12) and the true variance 2, is replaced by
realized varianceRV;.1 .

To estimate the objective expectation, E  2,j  , we use a linear forecast of future
realized variance aRRVi;; = + IV + RV + 1, with current implied and realized
variances. The model-free implied variance from options market is an informationally more
e cient forecast for future realized variance than the past realized variance (see, e.g., Jiang
and Tian, 2005, among others), while realized variance based on high-frequency data also pro-
vides additional power in forecasting future realized variance (Andersen, Bollerslev, Diebold,
and Labys, 2003). Therefore, a joint forecast model with one lag of implied variance and
one lag of realized variance seems to capture the most forecasting power based on time-

available information (Drechsler and Yaron, 2011).

B DCC Model of Engle (2002)

We estimate the conditional covariances of each equity portfolio with the market portfolio

and VRP ( imt+1 » ivrri+1 ) based on the mean-reverting DCC model of Engle (2002).

2The dierence between option implied and GARCH type ltered volatilities has been associated in
existing literature with notions of aggregate market risk aversion (Rosenberg and Engle, 2002; Bakshi and
Madan, 2006; Bollerslev, Gibson, and Zhou, 2011).



Engle de nes the conditional correlation between two random variablesg and r, that each
has zero mean as
Ev 1(rax ran)

12t = 4 ; (A4)
Et 1 rit Et 1 r%;t

where the returns are de ned as the conditional standard deviation times the standardized

disturbance:
2 =E r2 0 rig= ¢ Ug, =12 (A5)
it t 1 Tt o it it it ,

whereu;; is a standardized disturbance that has zero mean and variance one for each series.
Equations (A4) and (A5) indicate that the conditional correlation is also the conditional
covariance between the standardized disturbances:

_ Ev 1 (U Uzy)

12t = € = E¢ 1(Ug Ugy): (A6)
Et 1 u%;t Et 1 u%;t

The conditional covariance matrix of returns is de ned as
nqg o
H,= D,  Dy; whereD, =diag 0 (A7)
where . is the time-varying conditional correlation matrix

Ei 2(u u)=D,* H, D,'= ; whereu; =D, ry: (A8)

Engle (2002) introduces a mean-reverting DCC model:

qj;t

- ; A9
it ﬁﬁ (A9)
Git = j+tar (U 1 U 1 j)+ta (G 1 i) (A10)

where j is the unconditional correlation betweeru;; and u;;. Equation (A10) indicates
that the conditional correlation is mean reverting towards  as long asa; + a, < 1.
Engle (2002) assumes that each asset follows a univariate GARCH process and writes

the log likelihood function as:

1 X
L = 5 nlog(2 ) +log jHyj + riH, *ry
t=1
1 X . o
= 5 nlog(2 )+2log D+ rD, Dy fre v +log i+ uf  Tur :(AL1)
t=1



As shown in Engle (2002), letting the parameters iD; be denoted by and the additional
parameters in ; be denoted by' , equation (Al1l) can be written as the sum of a volatility

part and a correlation part:
L(;" )= Lv()+ Le(" ) (A12)

The volatility term is

XT

()= 5 nlog(@)+log jDij’ + rD, ?r, (A13)

t=1
and the correlation component is
. X0 1
Le(;' )= > logj ¢+ u; (U UU (A14)

t=1
The volatility part of the likelihood is the sum of individual GARCH likelihoods:

1 XX , r2
Lv()= 3 log(2 )+log {; + — (A15)

t=1 i=1 it
which is jointly maximized by separately maximizing each term. The second part of the like-
lihood is used to estimate the correlation parameters. The two-step approach to maximizing

the likelihood is to nd
"= argmaxfLy( )g; (A16)
and then take this value as given in the second stage:

"= argmaxfLc(®' )g: (A17)

C System of Regression Equations
Consider a system oh equations, of which the typicalith equation is
Yi = Xi i+ Ui (A18)

wherey; is aN 1 vector of time-series observations on thi¢h dependent variable,X; is a

N  k; matrix of observations ofk; independent variables, ; is ak; 1 vector of unknown
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coe cients to be estimated, andu; isaN 1 vector of random disturbance terms with mean
zero. Parks (1967) proposes an estimation procedure that allows the error term to be both
serially and cross-sectionally correlated. In particular, he assumes that the elements of the

disturbance vectoru follow an AR(1) process:

Ug = Uit 1+ "ie; i< 1 (A19)
where"j; is serially independently but contemporaneously correlated:

Cov("i"jt) = 4, foranyi;j; andCov("i"js)=0; forsé t (A20)

Equation (A18) can then be written as

yi = Xi i+ Piug; (A21)
with
] 3
@ 3 0 0
(@ 3y 10 0
21 2 1 20 0
P = : . (A22)
,N @ 2 N2 N3 g

Under this setup, Parks (1967) presents a consistent and asymptotically e cient three-
step estimation technique for the regression coe cients. The rst step uses single equation
regressions to estimate the parameters of autoregressive model. The second step uses single
equation regressions on transformed equations to estimate the contemporaneous covariances.

Finally, the Aitken estimator is formed using the estimated covariance,

N 1

= X' X X' 1y (A23)

where E[uu™] denotes the general covariance matrix of the innovation. In our applica-
tion, we use the aforementioned methodology with the slope coe cients restricted to be the

same for all equity portfolios and individual stocks. In particular, we use the same three-step






D Robustness Check

In this section, we provide a battery of robustness checks.

D.1 Results from the Generalized Conditional Covariance Model

There appears to be some controversy in the econometrics literature around the consistency
of QMLE parameter estimates generated by the DCC modetsOne may wonder if the lack of
consistency in the DCC models a ects our main ndings. To address this potential concern,
we use an alternative econometric methodology and estimate the conditional covariances
between excess returns on assetand the market portfolio m based on the generalized

conditional covariance (GCC) speci cation of Bali (2008}

Ri;t+1 = i0"' i]_Ri;t + IIi;t+1

Rmiaa = g+ ?Rm?t, * e .

E: "%Hl i2;t+1 = ot I1"% + 5 |2t (A24)
Et II2m;t+1 rzn;t+1 = (r)n + _inuzm;t_'i_ g] r%ﬁ;t )

E: ["i;t+1 " mite1 imt+1 — (l)m + |1m "t mt |2m im;t

where R;t+; and Rn.t+1 denote the time ¢ + 1) excess return on asset and the market
portfolio m over a risk-free rate, respectively, and,[ ] denotes the expectation operator
conditional on time t information. In the last equation above, one-month-ahead conditional
covariance, imt+1, IS de ned as a function of the last month's conditional covariance,im: ,
and the product of the last month's unexpected shocks to assetand the market portfolio
m (it "mit)-

We estimate the conditional covariances between the excess return on each equity port-

folio i and the innovation in the variance risk premiav RP, .y grp , Using an analogous GCC

problem of correlated residuals across rms or across time in a panel data setting. Petersen (2009) examines
di erent methods used in the two literatures and explains when the di erent methods yield the same (and
correct) standard errors and when they diverge.

4See Aielli (2013), Caporin and McAleer (2013), and the proposed solution in Noureldin, Shephard, and
Sheppard (2014).

SFollowing the ndings of Lee and Hansen (1994), Lumsdaine (1996), and Straumann and Mikosch (2003),
Francq and Zakoian (2004) provide consistency and asymptotic normality of the maximum likelihood esti-
mator of the parameters of GCC-type GARCH processes.



model:
Rit+1 =

I0'*' I;LRi;t + IIi;t+1
VRPy = E,’RP
2

VRP "
+ 17 VRP+ "yrein

n2 — i in2 i 2
Et "iia it = ot 1t o2y (A25)
E n2 2 = VRP 4, VRPu2 + VRP 2
t  VRPt+1 VRP;t+1 0 1 VRP;t 2 VRP;t
=N " ) — LVRP + BVRP uw w + iVRP
t[ iit+1 VRP;t+1] iVRP;t+1 — 0 1 it VRP;t 2 i)V RP;t

We estimate the conditional covariances of each equity portfolio with the market portfolio
and with the variance risk premia using the maximum likelihood method described in Bali
(2008). Once we generate the conditional covariances, we estimate the system of equations
given in equations (23)-(24) of the main text using the SUR methodology described in Section
C of the internet appendix.

Table Il of the internet appendix reports the parameter estimates and the t-statistics of
the system of equations for the 10 size, 10 book-to-market, 10 momentum, and 10 industry
portfolios (total of 40 portfolios) for the sample period January 1990 to December 2012. As
shown in the rst two rows of Table Il, the risk aversion and the uncertainty aversion coef-
cients are estimated to be positive and highly signi cant for the pooled datasetA = 2:86
with a t-statistic of 4.78 andB = 0:0026 with at-statistic of 4.50, indicating a signi cantly
positive market price of risk and uncertainty. Similar to our earlier ndings from the DCC
model, the Wald, and Wald, statistics reported in Table Il indicate that the two-factor
model with risk and uncertainty provides both statistical and economic success in explaining

stock market anomalies, except momentum.

D.2 DCC with Asymmetric GARCH

Because the conditional variance and covariance of stock market returns are not observable,
di erent approaches and speci cations used in estimating the conditional variance and co-
variance could lead to di erent conclusions. We have so far used the bivariate GARCH(1,1)
model of Bollerslev (1986) in equations (13)-(14) and (19)-(20) to obtain conditional variance
and covariance estimates. In this section, we investigate whether changing these speci ca-
tions in uences our main ndings.

The current volatility in the GARCH(1,1) model is de ned as a symmetric, linear function

of the last period's unexpected news and the last period's volatility. Since, in a symmetric
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GARCH process, positive and negative information shocks of the same magnitude produce
the same amount of volatility, the symmetric GARCH model cannot cope with the skewness
of stock return distribution. If a negative return shock causes more volatility than a positive
return shock of the same size, the symmetric GARCH model underpredicts the amount
of volatility following negative shocks and overpredicts the amount of volatility following
positive shocks. Furthermore, if large return shocks cause more volatility than a quadratic
function allows, then the symmetric GARCH model underpredicts volatility after a large
return shock and overpredicts volatility after a small return shock.

In this section we use an asymmetric GARCH model of Glosten, Jagannathan, and
Runkle (1993) that explicitly takes account of skewed distributions and allows good news
and bad news to have di erent impacts on the conditional volatility forecasts. To test whether
such variations in the variance forecasting speci cation alter our conclusion, we re-estimate

the DCC-based conditional covariances using the following alternative speci cation:

Ri;t+1 = io+ i1Ri;t + "i;t+1

Rmt+1 = 0+ TRmt+ "mtn

VRP. = ¢FP+ YRPVRP + "yrpia

E: "%t+l i?t+1 = é)"' iluﬁt + I2 |2t + i3"§tDi;t

E¢ "rzn;t+l r%ﬁ;t+1 = g+ in"ﬁut + 7 r%”l;t + g]"rzn;tDm;t (A26)
E¢ "\2/RP;t+1 \2/RP;t+1 = ofP+ :\L/RP"\leP;t + JRP \2/RP;t + g/RP”\Z/RP;tDVRP;t
Ei[Mit+1"mite1] imt+1 —  imit+1 it +1 m;t+1

Ec["it+1"vrpi+1] iVRPit+1 = iVRPit+l  it+l  VRPit+1

Et["mi+1"vRPi+1 MVRPt+1 = mVRPt+l  mt+l  VRPi+l

whereD,., Dy, and D, p, are indicator functions that equals one wheti; .1, "m;¢+1, and
"VRrpi+1 are negative and zero otherwise. The indicator function generates an asymmetric
GARCH e ect between positive and negative shocks.im:t+1, ivrpit+1, aNd myrpt+1 are
the time-t expected conditional correlations estimated using the mean-reverting DCC model
of Engle (2002).

A notable point in Table Il is that the main ndings from an asymmetric GARCH
speci cation of the conditional covariances are very similar to those reported in Table 1.
Speci cally, the risk aversion coe cients are estimated to be positive and highly signi cant
for all equity portfolios; A is in the range of 2.53 to 3.54 with the-statistics ranging from

2.58 to 3.11, implying a signi cantly positive link between expected return and risk. Sim-
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ilar to our results from GARCH(1,1) speci cation, asymmetric GARCH model of Glosten,
Jagannathan, and Runkle (1993) yields positive and signi cant coe cient estimates on the
covariance between equity portfolios and the variance risk premia. Speci cally, the uncer-
tainty aversion coe cients (B) are in the range of 0.0054 to 0.0075 with the-statistics
between 2.68 and 3.30. These results show that equity portfolios that are highly correlated
with uncertainty (proxied by VRP) carry a signi cant premium relative to portfolios that
are uncorrelated or lowly correlated with VRP.

With this alternative covariance speci cation, we also examine the empirical validity of
the conditional asset pricing model by testing the joint hypothesis. As shown in Table lII,
the Wald; statistics for the size, book-to-market, and industry portfolios are, respectively,
16.91, 7.89, and 14.41 with the correspondingvalues of 0.11, 0.72, and 0.21. The signi -
cantly positive risk and uncertainty aversion coe cients and the insigni cant Wald; statistics
indicate that the two-factor model explains the time-series and cross-sectional variation in
equity portfolios. Finally, we investigate whether the model with asymmetric GARCH spec-
i cation explains the return spreads between Small and Big; Value and Growth; and HiTec
and Telcm portfolios. The last row in Table IIl reports Wald, statistics from testing the
equality of conditional alphas for high-return and low-return portfolios Hy : 1= 10). For
the size, book-to-market, and industry portfolios, the Walgd statistics provide no evidence
for a signi cant conditional alpha for \Small-Big", \Value-Growth", and \HiTec-Telcm"
arbitrage portfolios. Overall, the DCC-based conditional covariances from the asymmet-
ric GARCH model captures the time-series and cross-sectional variation in returns on size,
book-to-market, and industry portfolios and generates signi cantly positive risk-return and

uncertainty-return tradeo s.

D.3 Results from Larger Cross-Section of Industry Portfolios

Given the positive risk-return and positive uncertainty-return coe cient estimates from the
three data sets and the success of the conditional asset pricing model in explaining the
industry, size, and value premia, we now examine how the model performs when we use a

larger cross-section of equity portfolios.
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The robustness of our ndings is investigated using the monthly excess returns on the
value-weighted 17-, 30-, 38-, 48-, and 49-industry portfolios. Table IV reports the common
slope estimates A, B), their t-statistics in parentheses, and the Waldand Wald, statistics
along with their p-values in square brackets. For the industry portfolios, the risk aversion
coe cients (A) are estimated to be positive, in the range of 2.20 to 2.78, and highly signi cant
with the t-statistics ranging from 2.31 to 3.34. Consistent with our earlier ndings from the
10 size, 10 book-to-market, and 10 industry portfolios, the results from the larger cross-
section of industry portfolios (17 to 49) imply a positive and signi cant relation between
expected return and market risk. Again similar to our ndings from 10 decile portfolios,
the uncertainty aversion coe cients are estimated to be positive, in the range of 0.0036 to
0.0041, and highly signi cant with the t-statistics ranging from 2.44 to 4.21. These results
provide evidence for a signi cantly positive market price of uncertainty and show that assets
with higher correlation with the variance risk premia generate higher returns next month.

Not surprisingly, the Wald, statistics for all industry portfolios have p-values in the range
of 0.20 to 0.75, indicating that the two-factor asset pricing model explains the time-series
and cross-sectional variation in larger number of equity portfolios. The last row shows that
the Wald, statistics from testing the equality of conditional alphas on the high-return and
low-return industry portfolios have p-values ranging from 0.44 to 0.80, implying that there
iS no signi cant risk-adjusted return di erence between the extreme portfolios of 17, 30,
38, 48, and 49 industries. The di erences in conditional alphas are both economically and
statistically insigni cant, showing that the two-factor model introduced in the paper provides

success in explaining industry e ects.

D.4 Controlling for Macroeconomic Variables

A series of papers argue that the stock market can be predicted by nancial and/or macroeco-
nomic variables associated with business cycle uctuations. The commonly chosen variables

include default spread (DEF), term spread (TERM), dividend price ratio (DIV), and the
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de-trended riskless rate or the relative T-bill rate (RREL)® We de ne DEF as the di erence
between the yields on BAA- and AAA-rated corporate bonds, and TERM as the di erence
between the yields on the 10-year Treasury bond and the 3-month Treasury bill. RREL is
de ned as the di erence between 3-month T-bill rate and its 12-month backward moving
average’ We obtain the aggregate dividend yield using the CRSP value-weighted index re-
turn with and without dividends based on the formula given in Fama and French (1988). In
addition to these nancial variables, we use some fundamental variables a ecting the state
of the U.S. economy: Monthly in ation rate based on the U.S. Consumer Price Index (INF);
Monthly growth rate of the U.S. industrial production (IP) obtained from the G.17 database
of the Federal Reserve Board; and Monthly US unemployment rate (UNEMP) obtained from
the Bureau of Labor Statistics.

According to Merton's (1973) ICAPM, state variables that are correlated with changes
in consumption and investment opportunities are priced in capital markets in the sense that
an asset's covariance with those state variables a ects its expected returns. Merton (1973)
also indicates that securities a ected by such state variables (or systematic risk factors)
should earn risk premia in a risk-averse economy. Macroeconomic variables used in the
literature are excellent candidates for these systematic risk factors because innovations in
macroeconomic variables can generate global impact on rm's fundamentals, such as their
cash ows, risk-adjusted discount factors, and/or investment opportunities. Following the
existing literature, we use the aforementioned nancial and macroeconomic variables as
proxies for state variables capturing shifts in the investment opportunity set.

We now investigate whether incorporating these variables into the predictive regressions
a ects the signi cance of the market prices of risk and uncertainty. Speci cally, we estimate

the portfolio-speci c intercepts and the common slope coe cients from the following panel

6See, e.g., Campbell (1987), Fama and French (1989), and Ferson and Harvey (1991) who test the
predictive power of these variables for expected stock returns.

’The monthly data on 10-year T-bond yields, 3-month T-bill rates, BAA- and AAA-rated corporate bond
yields are available from the Federal Reserve statistics release website.
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regression:

Ritsti = i+A COv(Ritsr;Rmiss)+ B COM Riger; VRPSNOCK

Rmtsi = m+A Van(Rpi)+ B COw Rpger; VRPSIOCK e pv

where X denotes a vector of lagged control variables; default spread (DEF), term spread
(TERM), relative T-bill rate (RREL), aggregate dividend yield (DIV), in ation rate (INF),
growth rate of industrial production (IP), and unemployment rate (UNEMP). The common
slope coe cients (A, B, and ) and their t-statistics are estimated using the monthly excess
returns on the market portfolio and the ten size, book-to-market, and industry portfolios.
As presented in Table V, after controlling for a wide variety of nancial and macroe-
conomic variables, our main ndings remain intact for all equity portfolios. The common
slope estimates on the conditional covariances of equity portfolios with the market factor
(A) remain positive and highly signi cant, indicating a positive and signi cant relation be-
tween expected return and market risk. Similar to our earlier ndings, the common slopes
on the conditional covariances of equity portfolios with the uncertainty factor B) remain
signi cantly positive as well, showing that assets with higher correlation with the variance
risk premium generate higher returns next month. Among the control variables, the growth
rate of industrial production is the only variable predicting future returns on equity port-
folios; |p turns out to be positive and signi cant|especially for the industry portfolios.
The positive relation between expected stock returns and innovations in output makes eco-
nomic sense. Increases in real economic activity (proxied by the growth rate of industrial
production) increase investors' expectations of future growth. Overall, the results in Table
V indicate that after controlling for variables associated with business conditions, the time-
varying exposures of equity portfolios to the market and uncertainty factors carry positive

risk premiums?

8We also used \expected business conditions" variable of Campbell and Diebold (2009) and our main
ndings remain intact for all equity portfolios. To save space, we do not report these results in the paper.
They are available upon request.
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D.5 Results from Individual Stocks

We have so far investigated the signi cance of risk, uncertainty, and return tradeo s using
equity portfolios. In this section, we replicate our analyses using individual stocks trading at
NYSE, AMEX, and NASDAQ. First, we generate a dataset for the largest 500 common stocks
(share code = 10 or 11) traded at NYSE/AMEX/NASDAQ. Following Shumway (1997), we
adjust for stock de-listing to avoid survivorship bias. Firms with missing observations on
beginning-of-month market cap or monthly returns over the period January 1990 { December
2010 are eliminated. Due to the fact that the list of 500 rms changes over time as a result
of changes in rms' market capitalizations, we obtain more than 500 rms over the period
1990-2010. Speci cally, the largest 500 rms are determined based on their end-of-month
market cap as of the end of each month from January 1990 to December 2010. There are 738
unique rms in our rst dataset. In our second dataset, the largest 500 rms are determined
based on their market cap at the end of December 2010. Our last dataset contains stocks in
the S&P 500 index. Since the stock composition of the S&P 500 index changes through time,
we rely on the most recent sample (as of December 2010). We also restrict our S&P 500
sample to 318 stocks with non-missing monthly return observations for the period January
1990 { December 2010.

Table VI presents the common slope estimate#®\( B) and their t-statistics for the indi-
vidual stocks in the aforementioned data sets. The risk aversion coe cient is estimated to
be positive and highly signi cant for all stock samples considered in the papeA = 6:42
with the t-statistic of 8.04 for the rst dataset containing 738 stocks (largest 500 stocks as of
the end of each month from January 1990 to December 2018);= 6:80 with the t-statistic
of 8.70 for the second dataset containing largest 500 stocks as of the end of December 2010;
and A = 6:02 with the t-statistic of 6.79 for the last dataset containing 318 stocks with

non-missing monthly return observations for the period 1990-2010. Con rming our ndings

9Speci cally, the last return on an individual stock used is either the last return available on CRSP, or the
de-listing return, if available. Otherwise, a de-listing return of -100% is included in the study, except that
the deletion reason is coded as 500 (reason unavailable), 520 (went to OTC), 551-573, 580 (various reason),
574 (bankruptcy), and 584 (does not meet exchange nancial guidelines). For these observations, a return
of -30% is assigned.
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from equity portfolios, the results from individual stocks imply a positive and signi cant
relation between expected return and market risk. Similarly, consistent with our earlier
ndings from equity portfolios, the uncertainty aversion coe cient is also estimated to be
positive and highly signi cant for all data sets: B = 0:0043 with thet-statistic of 3.61 for the
rst dataset, B = 0:0044 with thet-statistic of 3.67 for the second dataset, anB = 0:0046
with the t-statistic of 3.52 for the last dataset. These results indicate a signi cantly positive

market price of uncertainty for large stocks trading in the U.S. stock market.

D.6 Controlling for Market llliquidity and Default Risk

Elevated variance risk premia during economic recessions and market downturns often corre-
spond to the periods in which market illiquidity and default risk are both higher. Thus, it is
natural to think that the conditional covariances of equity portfolios with market illiquidity
and credit risk factors are positively linked to expected returns. In this section, we test
whether the covariances withv RPSNOCK could be picking up covariances with illiquidity
and default risk.

Following Amihud (2002), we measure market illiquidity in a month as the average daily
ratio of the absolute market return to the dollar trading volume within the month:

1% Rmg]
ILLIQ , = n %

whereRp.q andV OLD 4 are, respectively, the daily return and daily dollar trading volume
for the S&P 500 index on dayd, and n is the number of trading days in montht.

First, we generate the DCC-based conditional covariances of portfolio returns with market
illiquidity and then estimate the common slope coe cients A, B4, B;) from the following

panel regressions:

Ri;t +1 = i + A COVt (Ri;t +1 ; Rm;t+1) + Bl CO\& Ri;t +1 : V RPt?-E_]OCk
+B, Cou (Rit+1; ILLIQ t41)+ "ite1
Rmt+1 = m+ A Var(Rmt+1)+ B Cov Ry V RPE_I;L]OCK

+B; Cou (Rmi+1; ILLIQ t+1)+ "mi+1
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whereCov (Rit+1; ILLIQ +1) and Cov (Rmit+1; ILLIQ t+1) are the timet expected con-
ditional covariance between the change in market illiquidity and the excess return on portfolio
i and market portfolio m, respectively.

Table VII, Panel A, presents the common slope coe cients and theit-statistics estimated
using the monthly excess returns on the market portfolio and the 10 size, book-to-market,
and industry portfolios. The slope onCov (Rit+1; ILLIQ +1) is found to be positive but
statistically insigni cant for all equity portfolios considered in the paper. A notable point
in Table VIl is that the slopes onCov (Rit+1; Rmt+1) and Cow Ri41;V RP&E‘OCK remain
positive and highly signi cant after controlling for the covariances of equity portfolios with
market illiquidity.

Next, we test whether the variance risk premium is proxying for default or credit risk.
We use the TED spread as an indicator of credit risk and the perceived health of the banking
system. The TED spread is the di erence between the interest rates on interbank loans and
short-term U.S. government debt (T-bills). TED is an acronym formed from T-Bill and ED,
the ticker symbol for the Eurodollar futures contract!® The size of the spread is usually
denominated in basis points (bps). For example, if the T-bill rate is 5.10% and ED trades at
5.50%, the TED spread is 40 bps. The TED spread uctuates over time but generally has
remained within the range of 10 and 50 bps (0.1% and 0.5%) except in times of nancial crisis.
A rising TED spread often presages a downturn in the U.S. stock market, as it indicates that
liquidity is being withdrawn. The TED spread is an indicator of perceived credit risk in the
general economy. This is because T-bills are considered risk-free while LIBOR re ects the
credit risk of lending to commercial banks. When the TED spread increases, that is a sign
that lenders believe the risk of default on interbank loans (also known as counterparty risk)
is increasing. Interbank lenders therefore demand a higher rate of interest, or accept lower
returns on safe investments such as T-bills. When the risk of bank defaults is considered to

be decreasing, the TED spread decreases.

Onitially, the TED spread was the di erence between the interest rates for three-month U.S. Treasuries
contracts and the three-month Eurodollars contract as represented by the London Interbank O ered Rate
(LIBOR). However, since the Chicago Mercantile Exchange dropped T-bill futures, the TED spread is now
calculated as the di erence between the three-month T-bill interest rate and three-month LIBOR.
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We rst estimate the DCC-based conditional covariances of portfolio returns with the

TED spread and then estimate the common slope coe cients from the following SUR re-

gressions:
Rit+1 = it A Cov (Rit+1;Rmt+1)+ B1 Cow Ri;Hl;VRPSE]OCk
+BZ COVI (Ri;t+1; TEDt+1)+ Ili;t+l
Rmt+1 = m*+A Var(Rmt+1)+ B1 Covu Rm;Hl;VRPSIl’IOCk

+B; Cou (Rmi+1; TEDt+1)+ "mi+1

whereCov (Rit+1; TEDt+1) and Cov (Rmi+1; TEDi41) are the timet expected condi-
tional covariance between the changes in TED spread and the excess returns on portfolio
and market portfolio m, respectively.

Table VII, Panel A, shows the common slope coe cients and theit-statistics estimated
using the monthly excess returns on the market portfolio and the size, book-to-market, and
industry portfolios. The slope onCov (Rit+1; TED41) is found to be positive for the size
and book-to-market portfolios, and negative for the industry portfolios. Aside from yielding
an inconsistent predictive relation with future returns, the slopes on the conditional covari-
ances with the change in TED spread are statistically insigni cant for all equity portfolios.
Similar to our earlier ndings, the slopes on the conditional covariances with the market
risk and uncertainty factors remain positive and highly signi cant after controlling for the
covariances with default risk.

Finally, we investigate the signi cance of risk and uncertainty coe cients after controlling

for liquidity and credit spread simultaneously:
Rius1 = 1+A COM(Ris1;Rmes) + By CO% Rypur;VRPIIOCK
+B2 Cov (Rit+1; ILLIQ t+1)+ Bs Cow (Rit+1; TEDt1) + "its1
Rmit+1 = m*+ A Var (Rnt«1)+ B1 Cov Rm;t+1JVRPt§?OCk
+BZ COV[(Rm;Hl; ”—I—IQ t+1)+ B3 COVt(Rm;t+1; TEDt+1)+ "m;t+1

As shown in Panel A of Table VII, for the extended speci cation above, the common

slope coe cient, B, on Cov (Rit+1; [ILLIQ 1) is estimated to be positive and marginally
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signi cant for the book-to-market and industry portfolios, whereasB, is insigni cant for
the size portfolios. The covariances of equity portfolios with the change in TED spread do
not predict future returns as B3 is insigni cant for all equity portfolios. Controlling for the
market illiquidity and credit risk does not a ect our main ndings: the market risk-return
and uncertainty-return coe cients (A and B;) are both positive and highly signi cant for
all equity portfolios. Equity portfolios that are highly correlated with V RPEE‘OCK carry a

signi cant premium relative to portfolios that are uncorrelated or minimally correlated with
Vv RPSHOCK

t+1

We have so far provided evidence from the individual equity portfolios (10 size, 10 book-
to-market, and 10 industry portfolios). We now investigate whether our main ndings remain
intact if we use a joint estimation with all test assets simultaneously (total of 30 portfolios).
Panel B of Table VII reports the parameter estimates and thé-statistics that are adjusted
for heteroskedasticity and autocorrelation for each series and the cross-correlations among
the error terms. As shown in the rst row of Panel B, the risk aversion coe cient is estimated
to be positive and highly signi cant for the pooled dataset:A = 2:31 with the t-statistic
of 2.64, implying a positive and signi cant relation between expected return and market
risk. Similar to our earlier ndings, the uncertainty aversion coe cient is also estimated to
be positive and highly signi cant for the joint estimation: B = 0:0053 with the t-statistic
of 3.72. These results indicate a signi cantly positive market price of uncertainty when all
portfolios are combined together. Equity portfolios with higher sensitivity to increases in
VRP are expected to generate higher returns next period.

The last three rows in Panel B of Table VII provide evidence for a positive and marginally
signi cant relation betweenCou (Rit+1; [ILLIQ +1) and future returns, indicating that the
conditional covariances of equity portfolios with the market illiquidity are positively linked to
expected returns. However, the insigni cant relation betwee@ov (Rmt+1; TEDt+1) and
portfolio returns remains intact for the joint estimation as well. A notable point in Panel B

is that controlling for the market illiquidity and default risk individually and simultaneously



D.7 Relative Performance of the Conditional Asset Pricing Model
with Risk and Uncertainty

We now assess the relative performance of the newly proposed model in predicting the cross-
section of expected returns on equity portfolios. Speci cally, we test whether the conditional
asset pricing model with the market and uncertainty factors outperforms the conditional
CAPM with the market factor in terms of statistical t. The goodness of t of an asset
pricing model describes how well it ts a set of realized return observations. Measures of
goodness of t typically summarize the discrepancy between observed values and the values
expected under the model in question. Hence, we focus on the cross-section of realized
average returns on equity portfolios (as a benchmark) and the portfolios’ expected returns
implied by the two competing models.

Using equation (23), we compute the expected excess return on equity portfolios based on
the estimated prices of risk and uncertainty &; B ) and the sample averages of the conditional

covariance measuresgovt (Rit+1; Rmit+1) and Cou Ris1;V RP&E‘OCk :

Et [Ri;t +1] = it A COVt (Ri;t+1 : Rm;t+1) +B COVt Ri;t +1;V RPE?OCk : (A27)

Table VIII of the online appendix presents the realized monthly average excess returns
on the size, book-to-market, and industry portfolios and the cross-section of expected excess
returns generated by the Conditional CAPM and the two-factor conditional asset pricing
models. Clearly the newly proposed model with risk and uncertainty provides much more
accurate estimates of expected returns on the size, book-to-market, and industry portfolios.
Especially for the size and industry portfolios, expected returns implied by the two-factor
model with the market and VRP factors are almost identical to the realized average returns.
The last row in Table VIII reports the Mean Absolute Percentage Errors (MAPE) for the

two competing models:

MAPE = jRealized Expecteq; (A28)
Expected

where \Realized" is the realized monthly average excess return on each equity portfolio and

\Expected" is the expected excess return implied by equation (A27). For the conditional
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CAPM with the market factor, MAPE equals 5.20% for the size portfolios, 5.37% for the
book-to-market portfolios, and 6.32% for the industry portfolios. Accounting for the variance
risk premium improves the cross-sectional tting signi cantly: MAPE reduces to 0.61% for
the size portfolios, 1.66% for the book-to-market portfolios, and 0.55% for the industry
portfolios.

Figure 1 of the internet appendix provides a visual depiction of the realized and expected

returns for the size, book-to-market, and industry portfolios. It is clear that the two-factor
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Table Il Results from the Generalized Conditional Covariance

This table reports the portfolio-speci ¢ intercepts and the common slope estimates from the following panel
regression:

Ritss = i+ A Covt (Rir+1;Rme+1)+ B Covt Riru iVRPtS;rl]OCk + it
Rmts1 = m+A Var(Rmis1)+ B COow Rpmgsr;VRPSHOCK v )

where the conditional variance of the market and the conditional covariances are estimated with the general-
ized conditional covariance (GCC) speci cation of Bali (2008). The parameters in the panel regression and
their t-statistics are estimated using monthly excess returns on the market portfolio and the pooled datasets
of ten decile size, book-to-market, momentum, and industry portfolios (total of 40 equity portfolios) for the
sample period from January 1990 to December 2012. Thestatistics are adjusted for heteroskedasticity and
autocorrelation for each series and cross-correlations among the portfolios. Table show the common slope
coe cients ( A and B), the Wald; statistics from testing the joint hypothesis Hg : 1= 2= =0,
and the Wald, statistics from testing the equality of Alphas for high-return and low-return portfolios (Small

vs. Big; Value vs. Growth; Winner vs. Loser; and HiTec vs. Telcm). The p-values of Wald, and Wald,
statistics are given in square brackets.

A 2.8562
(4.78)
B 0.0026
(4.50)
Size Waldy 9.22
[51.11%)]
Small vs. Big Wald, 0.88
[34.85%]
Book-to-Market Wald 4.46
[92.43%)]
Value vs. Growth Wald, 0.78
[37.60%]
Momentum Wald { 19.67
[3.25%)]
Winner vs. Loser Wald, 5.35
[2.07%)]
Industry Wald 1 11.39
[32.80%]
HiTec vs. Telcm Walds 0.33
[56.38%)]
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Table Il Results from Asymmetric GARCH Model

This table reports the portfolio-speci ¢ intercepts and the common slope estimates from the following panel regression:

Rits1 = i +A Covi(Rits1;Rmt+1)+ B Covi Rigsr;VRPSNOCK 4oy

Rmt+1 = m+*+ A Varg(Rmt+1)+ B Covt Rmy +1 ;VRPtSHOCk + "mit +1

where the conditional variance and covariances are estimated using the asymmetric GARCH model of Glosten, Jagannathan,

and Runkle (1993). The parameters and their t-statistics are estimated using the monthly excess returns on the market

portfolio and the ten decile size, book-to-market, and industry portfolios for the sample period from January 1990 to December

2010. The alphas ( ) are reported for each equity portfolio and the t-statistics are presented in parentheses. The t-statistics

are adjusted for heteroskedasticity and autocorrelation for each series and cross-correlations among the portfolios. The last

four rows, respectively, show the common slope coe cients ( A and B), the Wald 1 statistics from testiss49701 Tf 16.7al4(in)29f 16.7hip this+1
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Table V Controlling for Macroeconomic Variables

This table presents the common slope estimates from the following panel regression:
Riast = i+A COV(RirsriRmiss)+ B COw Rirsr;VRPSIOK + X 4y
Rmtsi1 = m+A Var(Rmisi)+ B COow Rmgsr;VRPSIOK ) qm y

where X; denotes a vector of lagged control variables; default spread (DEF), term spread (TERM), relative
T-bill rate (RREL), aggregate dividend yield (DIV), in ation rate (INF), growth rate of industrial production

(IP), and unemployment rate (UNEMP). The common slope coe cients (A, B, and ) and their t-statistics
are estimated using the monthly excess returns on the market portfolio and the ten size, book-to-market,
and industry portfolios for the sample period January 1990 to December 2010. Thé-statistics are adjusted
for heteroskedasticity and autocorrelation for each series and cross- correlatlons among the portfolios. The
last two rows the Wald; statistics from testing the joint hypothesis Hg : 1 = 5, = @ =0, and the
Wald, statistics from testing the equality of Alphas for high-return and low-return portfolios (SmaII vs. Big;
Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald, and Wald, statistics are given in square
brackets.

Size Book-to-Market Industry
A 4.2630 2.5763 4.0421
(3.32) (2.40) (2.74)
B 0.0057 0.0051 0.0066
(2.85) (2.25) (2.96)
DEF -0.3804 -0.0739 0.6243
(-0.50) (-0.09) (1.02)
TERM -0.1964 -0.5366 -0.5405
(-0.64) (-1.69) (-2.17)
RREL 0.2330 0.1834 0.0104
(0.68) (0.52) (0.04)
DIV 0.0489 0.0228 0.0314
(1.33) (0.60) (1.05)
INF 0.0270 0.7158 -0.1862
(0.04) (0.93) (-0.31)
P 0.7433 0.8689 1.1941
(1.77) (2.01) (3.51)
UNEMP 0.0031 0.0047 0.0026
(1.13) (1.61) (1.15)
Wald 1 16.96 7.97 14.78
[0.11] [0.72] [0.19]
Wald, 1.46 1.63 0.67
[0.23] [0.20] [0.41]
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Table VI Results from Individual Stocks

This table presents the common slope estimatesA, B) from the following panel regression:
Riss = i+ A COM(Ris1iRmes1)+ B CO® RipariVRPIIOK + )
Rmt+1 = m+ A Var(Rnt+1)+ B Cov Rpi+1:V RP&TOCK + "t +1

where Cov; (Rit+1; Rmit+1) is the time-t expected conditional covariance between the excess return on
portfolio i (Rt +1 ) and the excess return on the market portfolio Rm:t +1 ), Cov Rit+1;V RP&TOCk is the
time-t expected conditional covariance between the excess return on portfolioand the shock to the variance
risk premia V RPSNOCK Coy Ry 41 ; VRPSHOCK s the time-t expected conditional covariance between

the excess return on the market portfoliom and the V RP&E‘OCk, and V ar; (Rn:t +1 ) is the time-t expected
conditional variance of excess returns on the market portfolio. The parameters and theiit-statistics are
estimated using the monthly excess returns on the market portfolio and the largest 500 stocks trading at
NYSE, AMEX, and NASDAQ, and 318 stocks in the S&P 500 index for the sample period from January
1990 to December 2010. First, the largest 500 rms is determined based on their end-of-month market cap
as of the end of each month from January 1990 to December 2010. Due to the fact that the list of 500
rms changes over time as a result of changes in rms' market capitalizations, there are 738 unique rms
in our rst dataset. In our second dataset, the largest 500 rms is determined based on their market cap
at the end of December 2010. Our last dataset contains stocks in the S&P 500 index. Since the stock
composition of the S&P 500 index changes through time, we rely on the most recent sample. We also restrict
our S&P 500 sample to 318 stocks with non-missing monthly return observations for the period January 1990
{ December 2010. Thet-statistics are adjusted for heteroskedasticity and autocorrelation for each series and
cross-correlations among the portfolios.

Largest 500 Stocks Largest 500 Stocks Largest 500 Stocks
end-of-month as of December 2010 S&P 500 Index
A 6.4237 A 6.8014 A 6.0243
(8.04) (8.70) (6.79)
B 0.0043 B 0.0044 B 0.0046
(3.61) (3.67) (3.52)
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Table VII Controlling for Market Illiquidity and Default Risk

This table presents the common slope estimatesA, B1, B2, B3) from the following panel regression:

Ris1 = 1 +A COou(Rits1;Rmis1)+ Br Cow Riypsr;VRPSHOK
+B2 Covt (Rit+1; ILLIQ t+1)+ B Covt(Rit+1; TEDw1)+ "its1
Rmgs1 = m+A Var (Rmesr)+ Bi Cov Ruyar;VRPSIOK

+B2 Covi (Rmi+1; ILLIQ +1)+ B3z Covi (Rmit+1; TEDi+1)+ "mi+1

where Cov; (Rit +1; Rmit+1) IS the time-t expected conditional covariance between the excess return on
portfolio i (Rt +1 ) and the excess return on the market portfolio Rmy +1 ), CO Rit+1;V RPﬁTOCk is the

time-t expected conditional covariance between the excess return on portfolioand the shock to the variance

risk premia (V RPSNOCK Cov (Rix+1; ILLIQ 41) is the time-t expected conditional covariance between

the excess return on portfolioi and the change in market illiquidity (  ILLIQ (+1), Cov (Rit+1; TEDt+1)

is the time-t expected conditional covariance between the excess return on portfolio and the change in
TED spread ( TED¢+1), and V ar; (Rm:t +1) is the time-t expected conditional variance of excess returns
on the market portfolio. In Panel A, the parameters and their t-statistics are estimated using the monthly
excess returns on the market portfolio and the 10 decile size, book-to-market, and industry portfolios for
the sample period from January 1990 to December 2010. In Panel B, the results are generated using a
joint estimation with all test assets simultaneously (total of 30 portfolios). The t-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and the cross-correlations among the portfolios.

Panel A. Results from 10 Equity Portfolios

10 Equity Portfolios A B B, Bs
Size 6.2227 0.0069 1.2423
(2.47) (3.07) (1.29)
Size 3.6465 0.0052 0.6372
(2.84) (2.09) (0.91)
Size 5.7826 0.0057 0.4347 1.1582
(2.48) (2.12) (0.69) (1.17)
Book-to-Market 5.3065 0.0062 2.2003
(2.66) (2.65) (1.34)
Book-to-Market 2.5695 0.0056 0.3148
(2.24) (2.37) (0.54)
Book-to-Market 6.4767 0.0079 2.8237 0.3247
(2.13) (2.90) (1.69) (0.61)
Industry 7.8266 0.0080 2.5677
(2.35) (3.16) (1.52)
Industry 3.1868 0.0071 -0.7625
(2.17) (2.88) (-1.11)
Industry 9.2805 0.0102 3.5064 -1.0014

(2.69) 31 (3.49) (1.99) (-1.43)




Table VII (continued)

Panel B. Results from 30 Equity Portfolios

A B B, Bs
2.3110 0.0053

(2.64) (3.72)

3.2552 0.0060 0.6796

(2.82) (4.03) (1.94)

2.1153 0.0055 -0.0477
(2.41) (3.49) (-0.11)
3.0067 0.0062 0.6497 -0.0844
(2.72) (3.78) (1.95) (-0.20)
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Table VIl Relative Performance of the Two-Factor Model with VRP

This table presents the realized monthly average excess returns on the size, book-to-market, and industry portfolios and
the cross-section of expected excess returns generated by the conditional CAPM with the market factor and the two-factor
conditional asset pricing model with the market and VRP factors. The last row reports the Mean Absolute Percentage Errors
(MAPE) for the two competing models.

Realized Return Benchmark  Two-Factor Model with VRP Conditional CAPM

Size Average Excess Returns Expected Excess Returns Expected Excess Returns
Small 0.8464% 0.8461% 0.8742%
2 0.7737% 0.7677% 0.8110%
3 0.7690% 0.7647% 0.8093%
4 0.6632% 0.6637% 0.7032%
5 0.7525% 0.7550% 0.7943%
6 0.7055% 0.7025% 0.7406%
7 0.7409% 0.7379% 0.7749%
8 0.6837% 0.6810% 0.7221%
9 0.6670% 0.6643% 0.7000%
Big 0.4479% 0.4598% 0.4789%
MAPE 0.61% 5.20%

Realized Return Benchmark  Two-Factor Model with VRP Conditional CAPM

Book-to-Market Average Excess Returns Expected Excess Returns Expected Excess Returns

Growth 0.5286% 0.5327% 0.5645%

2 0.5614% 0.5658% 0.5961%

3 0.6140% 0.6039% 0.6488%

4 0.6752% 0.6559% 0.6960%

5 0.6119% 0.6017% 0.6423%

6 0.5439% 0.5547% 0.5803%

7 0.6014% 0.5979% 0.6360%

8 0.5885% 0.5956% 0.6233%

9 0.6827% 0.6666% 0.7133%

Value 0.8221% 0.7994% 0.8564%
MAPE 1.66% 5.37%

Realized Return Benchmark  Two-Factor Model with VRP Conditional CAPM

Industry Average Excess Returns Expected Excess Returns Expected Excess Returns
Telcm 0.2727% 0.2747% 0.3280%
Utils 0.4712% 0.4727% 0.4965%
Other 0.4965% 0.4910% 0.5366%
Durbl 0.5313% 0.5315% 0.5513%
Shops 0.5954% 0.5912% 0.6247%
Hith 0.6138% 0.6088% 0.6478%
NoDur 0.6110% 0.6152% 0.6534%
Manuf 0.7172% 0.7206% 0.7474%
Enrgy 0.7606% 0.7643% 0.7824%
HiTec 0.8358% 0.8350% 0.8466%
MAPE 0.55% 6.32%
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Realized and Expected Returns on Size Portfolios
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Figure 1 Relative Performance of the Conditional ICAPM with Uncertainty

This gure plots the realized monthly average excess returns on the size (top panel), book-to-market (middle
panel), and industry portfolios (bottom panel) and the cross-section of expected excess returns generated
by the Conditional CAPM with the market factor and the Conditional ICAPM with the market and VRP
factors. The results indicate superior performance of the conditional asset pricing model introduced in the
paper.
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