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The Cross-Section of Volatility
and Expected Returns

ANDREW ANG, ROBERT J. HODRICK, YUHANG XING, and XIAOYAN ZHANG∗

ABSTRACT

We examine the pricing of aggregate volatility risk in the cross-section of stock returns.

Consistent with theory, we find that stocks with high sensitivities to innovations in

aggregate volatility have low average returns. Stocks with high idiosyncratic volatility

relative to the Fama and French (1993, Journal of Financial Economics 25, 2349)

model have abysmally low average returns. This phenomenon cannot be explained by

exposure to aggregate volatility risk. Size, book-to-market, momentum, and liquidity

effects cannot account for either the low average returns earned by stocks with high

exposure to systematic volatility risk or for the low average returns of stocks with

high idiosyncratic volatility.

IT IS WELL KNOWN THAT THE VOLATILITY OF STOCK RETURNS varies over time. While con-
siderable research has examined the time-series relation between the volatility
of the market and the expected return on the market (see, among others, Camp-
bell and Hentschel (1992) and Glosten, Jagannathan, and Runkle (1993)), the
question of how aggregate volatility affects the cross-section of expected stock
returns has received less attention. Time-varying market volatility induces
changes in the investment opportunity set by changing the expectation of fu-
ture market returns, or by changing the risk-return trade-off. If the volatility
of the market return is a systematic risk factor, the arbitrage pricing theory
or a factor model predicts that aggregate volatility should also be priced in the
cross-section of stocks. Hence, stocks with different sensitivities to innovations
in aggregate volatility should have different expected returns.

The first goal of this paper is to provide a systematic investigation of how
the stochastic volatility of the market is priced in the cross-section of expected
stock returns. We want to both determine whether the volatility of the market

∗Ang is with Columbia University and NBER. Hodrick is with Columbia University and NBER.

Yuhang Xing is at Rice University. Xiaoyan Zhang is at Cornell University. We thank Joe Chen, Mike

Chernov, Miguel Ferreira, Jeff Fleming, Chris Lamoureux, Jun Liu, Laurie Hodrick, Paul Hribar,

Jun Pan, Matt Rhodes-Kropf, Steve Ross, David Weinbaum, and Lu Zhang for helpful discussions.

We also received valuable comments from seminar participants at an NBER Asset Pricing meeting,

Campbell and Company, Columbia University, Cornell University, Hong Kong University, Rice

University, UCLA, and the University of Rochester. We thank Tim Bollerslev, Joe Chen, Miguel

Ferreira, Kenneth French, Anna Scherbina, and Tyler Shumway for kindly providing data. We

especially thank an anonymous referee and Rob Stambaugh, the editor, for helpful suggestions

that greatly improved the paper. Andrew Ang and Bob Hodrick both acknowledge support from the

National Science Foundation.

259



260 The Journal of Finance

is a priced risk factor and estimate the price of aggregate volatility risk. Many
option studies have estimated a negative price of risk for market volatility using
options on an aggregate market index or options on individual stocks.1 Using
the cross-section of stock returns, rather than options on the market, allows us
to create portfolios of stocks that have different sensitivities to innovations in
market volatility. If the price of aggregate volatility risk is negative, stocks with
large, positive sensitivities to volatility risk should have low average returns.
Using the cross-section of stock returns also allows us to easily control for a
battery of cross-sectional effects, such as the size and value factors of Fama
and French (1993), the momentum effect of Jegadeesh and Titman (1993), and
the effect of liquidity risk documented by Pástor and Stambaugh (2003). Option
pricing studies do not control for these cross-sectional risk factors.

We find that innovations in aggregate volatility carry a statistically signif-
icant negative price of risk of approximately −1% per annum. Economic the-
ory provides several reasons why the price of risk of innovations in market
volatility should be negative. For example, Campbell (1993, 1996) and Chen
(2002) show that investors want to hedge against changes in market volatility,
because increasing volatility represents a deterioration in investment opportu-
nities. Risk-averse agents demand stocks that hedge against this risk. Periods
of high volatility also tend to coincide with downward market movements (see
French, Schwert, and Stambaugh (1987) and Campbell and Hentschel (1992)).
As Bakshi and Kapadia (2003) comment, assets with high sensitivities to mar-
ket volatility risk provide hedges against market downside risk. The higher
demand for assets with high systematic volatility loadings increases their price
and lowers their average return. Finally, stocks that do badly when volatility
increases tend to have negatively skewed returns over intermediate horizons,
while stocks that do well when volatility rises tend to have positively skewed re-
turns. If investors have preferences over coskewness (see Harvey and Siddique
(2000)), stocks that have high sensitivities to innovations in market volatility
are attractive and have low returns.2

The second goal of the paper is to examine the cross-sectional relationship be-
tween idiosyncratic volatility and expected returns, where idiosyncratic volatil-
ity is defined relative to the standard Fama and French (1993) model.3 If the
Fama–French model is correct, forming portfolios by sorting on idiosyncratic
volatility will obviously provide no difference in average returns. Nevertheless,
if the Fama–French model is false, sorting in this way potentially provides a set

1 See, among others, Jackwerth and Rubinstein (1996), Bakshi, Cao and Chen (2000), Chernov

and Ghysels (2000), Burashi and Jackwerth (2001), Coval and Shumway (2001), Benzoni (2002),

Pan (2002), Bakshi and Kapadia (2003), Eraker, Johannes and Polson (2003), Jones (2003), and

Carr and Wu (2003).
2 Bates (2001) and Vayanos (2004) provide recent structural models whose reduced form factor

structures have a negative risk premium for volatility risk.
3 Recent studies examining total or idiosyncratic volatility focus on the average level of firm-

level volatility. For example, Campbell et al. (2001) and Xu and Malkiel (2003) document that

idiosyncratic volatility has increased over time. Brown and Ferreira (2003) and Goyal and Santa-

Clara (2003) argue that idiosyncratic volatility has positive predictive power for excess market

returns, but this is disputed by Bali et al. (2004).
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of assets that may have different exposures to aggregate volatility and hence
different average returns. Our logic is the following. If aggregate volatility is a
risk factor that is orthogonal to existing risk factors, the sensitivity of stocks
to aggregate volatility times the movement in aggregate volatility will show up
in the residuals of the Fama–French model. Firms with greater sensitivities to
aggregate volatility should therefore have larger idiosyncratic volatilities rela-
tive to the Fama–French model, everything else being equal. Differences in the
volatilities of firms’ true idiosyncratic errors, which are not priced, will make
this relation noisy. We should be able to average out this noise by constructing
portfolios of stocks to reveal that larger idiosyncratic volatilities relative to the
Fama–French model correspond to greater sensitivities to movements in aggre-
gate volatility and thus different average returns, if aggregate volatility risk is
priced.

While high exposure to aggregate volatility risk tends to produce low ex-
pected returns, some economic theories suggest that idiosyncratic volatility
should be positively related to expected returns. If investors demand compen-
sation for not being able to diversify risk (see Malkiel and Xu (2002) and Jones
and Rhodes-Kropf (2003)), then agents will demand a premium for holding
stocks with high idiosyncratic volatility. Merton (1987) suggests that in an
information-segmented market, firms with larger firm-specific variances re-
quire higher average returns to compensate investors for holding imperfectly
diversified portfolios. Some behavioral models, like Barberis and Huang (2001),
also predict that higher idiosyncratic volatility stocks should earn higher ex-
pected returns. Our results are directly opposite to these theories. We find that
stocks with high idiosyncratic volatility have low average returns. There is a
strongly significant difference of −1.06% per month between the average re-
turns of the quintile portfolio with the highest idiosyncratic volatility stocks
and the quintile portfolio with the lowest idiosyncratic volatility stocks.

In contrast to our results, earlier researchers either find a significantly pos-
itive relation between idiosyncratic volatility and average returns, or they fail
to find any statistically significant relation between idiosyncratic volatility and
average returns. For example, Lintner (1965) shows that idiosyncratic volatil-
ity carries a positive coefficient in cross-sectional regressions. Lehmann (1990)
also finds a statistically significant, positive coefficient on idiosyncratic volatil-
ity over his full sample period. Similarly, Tinic and West (1986) and Malkiel
and Xu (2002) unambiguously find that portfolios with higher idiosyncratic
volatility have higher average returns, but they do not report any significance
levels for their idiosyncratic volatility premiums. On the other hand, Longstaff
(1989) finds that a cross-sectional regression coefficient on total variance for
size-sorted portfolios carries an insignificant negative sign.

The difference between our results and the results of past studies is that the
past literature either does not examine idiosyncratic volatility at the firm level,
or does not directly sort stocks into portfolios ranked on this measure of inter-
est. For example, Tinic and West (1986) work only with 20 portfolios sorted on
market beta, while Malkiel and Xu (2002) work only with 100 portfolios sorted
on market beta and size. Malkiel and Xu (2002) only use the idiosyncratic
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volatility of one of the 100 beta/size portfolios to which a stock belongs to proxy
for that stock’s idiosyncratic risk and, thus, do not examine firm-level idiosyn-
cratic volatility. Hence, by not directly computing differences in average returns
between stocks with low and high idiosyncratic volatilities, previous studies
miss the strong negative relation between idiosyncratic volatility and average
returns that we find.

The low average returns to stocks with high idiosyncratic volatilities could
arise because stocks with high idiosyncratic volatilities may have high exposure
to aggregate volatility risk, which lowers their average returns. We investigate
this conjecture and find that this is not a complete explanation. Our idiosyn-
cratic volatility results are also robust to controlling for value, size, liquidity,
volume, dispersion of analysts’ forecasts, and momentum effects. We find the
effect robust to different formation periods for computing idiosyncratic volatil-
ity and for different holding periods. The effect also persists in bull and bear
markets, recessions and expansions, and volatile and stable periods. Hence, our
results on idiosyncratic volatility represent a substantive puzzle.

The rest of this paper is organized as follows. In Section I, we examine how
aggregate volatility is priced in the cross-section of stock returns. Section II
documents that firms with high idiosyncratic volatility have very low average
returns. Finally, Section III concludes.

I. Pricing Systematic Volatility in the Cross-Section

A. Theoretical Motivation

When investment opportunities vary over time, the multifactor models of
Merton (1973) and Ross (1976) show that risk premia are associated with the
conditional covariances between asset returns and innovations in state vari-
ables that describe the time-variation of the investment opportunities. Camp-
bell’s (1993, 1996) version of the Intertemporal Capital Asset Pricing Model
(I-CAPM) shows that investors care about risks both from the market return
and from changes in forecasts of future market returns. When the represen-
tative agent is more risk averse than log utility, assets that covary positively
with good news about future expected returns on the market have higher av-
erage returns. These assets command a risk premium because they reduce a
consumer’s ability to hedge against a deterioration in investment opportuni-
ties. The intuition from Campbell’s model is that risk-averse investors want
to hedge against changes in aggregate volatility because volatility positively
affects future expected market returns, as in Merton (1973).

However, in Campbell’s setup, there is no direct role for fluctuations in mar-
ket volatility to affect the expected returns of assets because Campbell’s model
is premised on homoskedasticity. Chen (2002) extends Campbell’s model to a
heteroskedastic environment which allows for both time-varying covariances
and stochastic market volatility. Chen shows that risk-averse investors also
want to directly hedge against changes in future market volatility. In Chen’s
model, an asset’s expected return depends on risk from the market return,
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changes in forecasts of future market returns, and changes in forecasts of fu-
ture market volatilities. For an investor more risk averse than log utility, Chen
shows that an asset that has a positive covariance between its return and a
variable that positively forecasts future market volatilities causes that asset to
have a lower expected return. This effect arises because risk-averse investors
reduce current consumption to increase precautionary savings in the presence
of increased uncertainty about market returns.

Motivated by these multifactor models, we study how exposure to market
volatility risk is priced in the cross-section of stock returns. A true conditional
multifactor representation of expected returns in the cross-section would take
the following form:

ri
t+1 = ai

t + βi
m,t

(
rm

t+1 − γm,t
) + βi

v,t(vt+1 − γv,t) +
K∑

k=1

βi
k,t( fk,t+1 − γk,t), (1)

where ri
t+1 is the excess return on stock i, β i

m,t is the loading on the excess mar-

ket return, β i
v,t is the asset’s sensitivity to volatility risk, and the β i

k,t coefficients
for k = 1, . . . , K represent loadings on other risk factors. In the full conditional
setting in equation (1), factor loadings, conditional means of factors, and fac-
tor premiums potentially vary over time. The model in equation (1) is written
in terms of factor innovations, so rm

t+1 − γm,t represents the innovation in the
market return, vt+1 − γv,t represents the innovation in the factor reflecting ag-
gregate volatility risk, and innovations to the other factors are represented by
fk,t+1 − γk,t. The conditional mean of the market and aggregate volatility are
denoted by γm,t and γv,t, respectively, while the conditional means of the other
factors are denoted by γk,t. In equilibrium, the conditional mean of stock i is
given by

ai
t = Et

(
ri

t+1

) = βi
m,tλm,t + βi

v,tλv,t +
K∑

k=1

βi
k,tλk,t , (2)

where λm,t is the price of risk of the market factor, λv,t is the price of aggre-
gate volatility risk, and the λk,t are the prices of risk of the other factors. Note
that only if a factor is traded is the conditional mean of a factor equal to its
conditional price of risk.

The main prediction from the factor model setting of equation (1) that we
examine is that stocks with different loadings on aggregate volatility risk have
different average returns.4 However, the true model in equation (1) is infeasible

4 While an I-CAPM implies joint time-series as well as cross-sectional predictability, we do not

examine time-series predictability of asset returns by systematic volatility. Time-varying volatility

risk generates intertemporal hedging demands in partial equilibrium asset allocation problems. In

a partial equilibrium setting, Liu (2001) and Chacko and Viceira (2003) examine how volatility risk

affects the portfolio allocation of stocks and risk-free assets, while Liu and Pan (2003) show how

investors can optimally exploit the variation in volatility with options. Guo and Whitelaw (2003)

examine the intertemporal components of time-varying systematic volatility in a Campbell (1993,

1996) equilibrium I-CAPM.
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to examine because the true set of factors is unknown and the true conditional
factor loadings are unobservable. Hence, we do not attempt to directly use equa-
tion (1) in our empirical work. Instead, we simplify the full model of equation
(1), which we now detail.

B. The Empirical Framework

To investigate how aggregate volatility risk is priced in the cross-section of
equity returns we make the following simplifying assumptions to the full spec-
ification in equation (1). First, we use observable proxies for the market factor
and the factor representing aggregate volatility risk. We use the CRSP value-
weighted market index to proxy for the market factor. To proxy innovations
in aggregate volatility, (vt+1 − γv,t), we use changes in the VIX index from the
Chicago Board Options Exchange (CBOE).5 Second, we reduce the number of
factors in equation (1) to just the market factor and the proxy for aggregate
volatility risk. Finally, to capture the conditional nature of the true model, we
use short intervals—1 month of daily data—to take into account possible time
variation of the factor loadings. We discuss each of these simplifications in turn.

B.1. Innovations in the VIX Index

The VIX index is constructed so that it represents the implied volatility of a
synthetic at-the-money option contract on the S&P100 index that has a matu-
rity of 1 month. It is constructed from eight S&P100 index puts and calls and
takes into account the American features of the option contracts, discrete cash
dividends, and microstructure frictions such as bid–ask spreads (see Whaley
(2000) for further details).6 Figure 1 plots the VIX index from January 1986
to December 2000. The mean level of the daily VIX series is 20.5%, and its
standard deviation is 7.85%.

Because the VIX index is highly serially correlated with a first-order au-
tocorrelation of 0.94, we measure daily innovations in aggregate volatility by
using daily changes in VIX, which we denote as �VIX. Daily first differences in
VIX have an effective mean of zero (less than 0.0001), a standard deviation of

5 In previous versions of this paper, we also consider: Sample volatility, following French

et al. (1987); a range-based estimate, following Alizadeh, Brandt, and Diebold (2002); and a high-

frequency estimator of volatility from Andersen, Bollerslev, and Diebold (2003). Using these mea-

sures to proxy for innovations in aggregate volatility produces little spread in cross-sectional av-

erage returns. These tables are available upon request.
6 On September 22, 2003, the CBOE implemented a new formula and methodology to construct

its volatility index. The new index is based on the S&P500 (rather than the S&P100) and takes

into account a broader range of strike prices rather than using only at-the-money option contracts.

The CBOE now uses VIX to refer to this new index. We use the old index (denoted by the ticker

VXO). We do not use the new index because it has been constructed by backfilling only to 1990,

whereas the VXO is available in real time from 1986. The CBOE continues to make both volatility

indices available. The correlation between the new and the old CBOE volatility series is 98% from

1990 to 2000, but the series that we use has a slightly broader range than the new CBOE volatility

series.
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Figure 1. Plot ofVIX.The figure shows theVIXindex plotted at a daily frequency. The sampleperiod is January 1986 to December 200442265%, and negligible serial correlation (the first-order autocorrelation of�VIXis−140001). As part of our robustness checks in Section I.C, we also measureinnovations inVIXby specifying a stationary time-series model for the con-ditional mean ofVIXand find our results to be similar to those using simplefirst differences. While�VIXappears to be an ideal proxy for innovations involatility risk because theVIXindex is representative of traded option secu-rities whose prices directly reflect volatility risk, there are two main caveatswith respect to usingVIXto represent observable market volatility.The first concern is that theVIXindex is the implied volatility from theBlack–Scholes (1973) model, and we know that the Black–Scholes model is anapproximation. If the true stochastic environment is characterized by stochas-tic volatility and jumps,�VIXwill reflect total quadratic variation in bothdiffusion and jump components (see, for example, Pan (2002)). Although Bates(2000) argues that implied volatilities computed taking into account jump riskare very close to original Black–Scholes implied volatilities, jump risk may bepriced differently from volatility risk. Our analysis does not separate jumprisk from diffusion risk, so our aggregate volatility risk may include jump riskcomponents.
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A more serious reservation about the VIX index is that VIX combines both
stochastic volatility and the stochastic volatility risk premium. Only if the risk
premium is zero or constant would �VIX be a pure proxy for the innovation in
aggregate volatility. Decomposing �VIX into the true innovation in volatility
and the volatility risk premium can only be done by writing down a formal
model. The form of the risk premium depends on the parameterization of the
price of volatility risk, the number of factors, and the evolution of those factors.
Each different model specification implies a different risk premium. For exam-
ple, many stochastic volatility option pricing models assume that the volatility
risk premium can be parameterized as a linear function of volatility (see, for
example, Chernov and Ghysels (2000), Benzoni (2002), and Jones (2003)). This
may or may not be a good approximation to the true price of risk. Rather than
imposing a structural form, we use an unadulterated �VIX series. An advan-
tage of this approach is that our analysis is simple to replicate.

B.2. The Pre-Formation Regression

Our goal is to test whether stocks with different sensitivities to aggregate
volatility innovations (proxied by �VIX) have different average returns. To
measure the sensitivity to aggregate volatility innovations, we reduce the num-
ber of factors in the full specification in equation (1) to two, namely, the mar-
ket factor and �VIX. A two-factor pricing kernel with the market return and
stochastic volatility as factors is also the standard setup commonly assumed by
many stochastic option pricing studies (see, for example, Heston (1993)). Hence,
the empirical model that we examine is

ri
t = β0 + βi

MKTMKTt + βi
�VIX�VIXt + εi

t , (3)

where MKT is the market excess return, �VIX is the instrument we use for
innovations in the aggregate volatility factor, and β i

MKT and β i
�VIX are loadings

on market risk and aggregate volatility risk, respectively.
Previous empirical studies suggest that there are other cross-sectional factors

that have explanatory power for the cross-section of returns, such as the size
and value factors of the Fama and French (1993) three-factor model (hereafter
FF-3). We do not directly model these effects in equation (3), because controlling
for other factors in constructing portfolios based on equation (3) may add a lot of
noise. Although we keep the number of regressors in our pre-formation portfolio
regressions to a minimum, we are careful to ensure that we control for the FF-
3 factors and other cross-sectional factors in assessing how volatility risk is
priced using post-formation regression tests.

We construct a set of assets that are sufficiently disperse in exposure to
aggregate volatility innovations by sorting firms on �VIX loadings over the
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coefficients with a reasonable degree of precision and pinning down conditional
coefficients in an environment with time-varying factor loadings. Pástor and
Stambaugh (2003), among others, also use daily data with a 1-month window in
similar settings. At the end of each month, we sort stocks into quintiles, based
on the value of the realized β�VIX coefficients over the past month. Firms in
quintile 1 have the lowest coefficients, while firms in quintile 5 have the highest
β�VIX loadings. Within each quintile portfolio, we value weight the stocks. We
link the returns across time to form one series of post-ranking returns for each
quintile portfolio.

Table I reports various summary statistics for quintile portfolios sorted by
past β�VIX over the previous month using equation (3). The first two columns
report the mean and standard deviation of monthly total, not excess, simple
returns. In the first column under the heading “Factor Loadings,” we report the
pre-formation β�VIX coefficients, which are computed at the beginning of each
month for each portfolio and are value weighted. The column reports the time-
series average of the pre-formation β�VIX loadings across the whole sample.
By construction, since the portfolios are formed by ranking on past β�VIX , the
pre-formation β�VIX loadings monotonically increase from −2.09 for portfolio 1
to 2.18 for portfolio 5.

The columns labeled “CAPM Alpha” and “FF-3 Alpha” report the time-series
alphas of these portfolios relative to the CAPM and to the FF-3 model, respec-
tively. Consistent with the negative price of systematic volatility risk found by
the option pricing studies, we see lower average raw returns, CAPM alphas,
and FF-3 alphas with higher past loadings of β�VIX . All the differences be-
tween quintile portfolios 5 and 1 are significant at the 1% level, and a joint
test for the alphas equal to zero rejects at the 5% level for both the CAPM and
the FF-3 model. In particular, the 5-1 spread in average returns between the
quintile portfolios with the highest and lowest β�VIX coefficients is −1.04% per
month. Controlling for the MKT factor exacerbates the 5-1 spread to −1.15%
per month, while controlling for the FF-3 model decreases the 5-1 spread to
−0.83% per month.

B.3. Requirements for a Factor Risk Explanation

While the differences in average returns and alphas corresponding to dif-
ferent β�VIX loadings are very impressive, we cannot yet claim that these dif-
ferences are due to systematic volatility risk. We examine the premium for
aggregate volatility within the framework of an unconditional factor model.
There are two requirements that must hold in order to make a case for a fac-
tor risk-based explanation. First, a factor model implies that there should be
contemporaneous patterns between factor loadings and average returns. For
example, in a standard CAPM, stocks that covary strongly with the market
factor should, on average, earn high returns over the same period. To test a fac-
tor model, Black, Jensen, and Scholes (1972), Fama and French (1992, 1993),
Jagannathan and Wang (1996), and Pástor and Stambaugh (2003), among
others, all form portfolios using various pre-formation criteria, but examine
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post-ranking factor loadings that are computed over the full sample period.
While the β�VIX loadings show very strong patterns of future returns, they rep-
resent past covariation with innovations in market volatility. We must show
that the portfolios in Table I also exhibit high loadings with volatility risk over
the same period used to compute the alphas.

To construct our portfolios, we take �VIX to proxy for the innovation in
aggregate volatility at a daily frequency. However, at the standard monthly
frequency, which is the frequency of the ex post returns for the alphas reported
in Table I, using the change in VIX is a poor approximation for innovations
in aggregate volatility. This is because at lower frequencies, the effect of the
conditional mean of VIX plays an important role in determining the unantic-
ipated change in VIX. In contrast, the high persistence of the VIX series at a
daily frequency means that the first difference of VIX is a suitable proxy for
the innovation in aggregate volatility. Hence, we should not measure ex post
exposure to aggregate volatility risk by looking at how the portfolios in Table I
correlate ex post with monthly changes in VIX.

To measure ex post exposure to aggregate volatility risk at a monthly fre-
quency, we follow Breeden, Gibbons, and Litzenberger (1989) and construct
an ex post factor that mimics aggregate volatility risk. We term this mimick-
ing factor FVIX. We construct the tracking portfolio so that it is the portfolio
of asset returns maximally correlated with realized innovations in volatility
using a set of basis assets. This allows us to examine the contemporaneous re-
lationship between factor loadings and average returns. The major advantage
of using FVIX to measure aggregate volatility risk is that we can construct a
good approximation for innovations in market volatility at any frequency. In
particular, the factor mimicking aggregate volatility innovations allows us to
proxy aggregate volatility risk at the monthly frequency by simply cumulating
daily returns over the month on the underlying base assets used to construct
the mimicking factor. This is a much simpler method for measuring aggregate
volatility innovations at different frequencies, rather than specifying different,
and unknown, conditional means for VIX that depend on different sampling
frequencies. After constructing the mimicking aggregate volatility factor, we
confirm that it is high exposure to aggregate volatility risk that is behind the
low average returns to past β�VIX loadings.

However, just showing that there is a relation between ex post aggregate
volatility risk exposure and average returns does not rule out the explana-
tion that the volatility risk exposure is due to known determinants of expected
returns in the cross-section. Hence, our second condition for a risk-based expla-
nation is that the aggregate volatility risk exposure is robust to controlling for
various stock characteristics and other factor loadings. Several of these cross-
sectional effects may be at play in the results of Table I. For example, quintile
portfolios 1 and 5 have smaller stocks, and stocks with higher book-to-market
ratios, and these are the portfolios with the most extreme returns. Periods
of very high volatility also tend to coincide with periods of market illiquidity
(see, among others, Jones (2003) and Pástor and Stambaugh (2003)). In Sec-
tion I.C, we control for size, book-to-market, and momentum effects, and also
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specifically disentangle the exposure to liquidity risk from the exposure to sys-
tematic volatility risk.

B.4. A Factor Mimicking Aggregate Volatility Risk

Following Breeden et al. (1989) and Lamont (2001), we create the mimicking
factor FVIX to track innovations in VIX by estimating the coefficient b in the
following regression:

�VIXt = c + b′X t + ut , (4)

where Xt represents the returns on the base assets. Since the base assets are
excess returns, the coefficient b has the interpretation of weights in a zero-
cost portfolio. The return on the portfolio, b′Xt, is the factor FVIX that mimics
innovations in market volatility. We use the quintile portfolios sorted on past
β�VIX in Table I as the base assets Xt. These base assets are, by construction, a
set of assets that have different sensitivities to past daily innovations in VIX.7

We run the regression in equation (4) at a daily frequency every month and use
the estimates of b to construct the mimicking factor for aggregate volatility risk
over the same month.

An alternative way to construct a factor that mimics volatility risk is to di-
rectly construct a traded asset that reflects only volatility risk. One way to do
this is to consider option returns. Coval and Shumway (2001) construct market-
neutral straddle positions using options on the aggregate market (S&P100
options). This strategy provides exposure to aggregate volatility risk. Coval
and Shumway approximate daily at-the-money straddle returns by taking a
weighted average of zero-beta straddle positions, with strikes immediately
above and below each day’s opening level of the S&P100. They cumulate these
daily returns each month to form a monthly return, which we denote as STR.8

In Section I.D, we investigate the robustness of our results to using STR in
place of FVIX when we estimate the cross-sectional aggregate volatility price
of risk.

Once we construct FVIX, then the multifactor model (3) holds, except we can
substitute the (unobserved) innovation in volatility with the tracking portfolio
that proxies for market volatility risk (see Breeden (1979)). Hence, we can write
the model in equation (3) as the following cross-sectional regression:

ri
t = αi + βi

MKTMKTt + βi
FVIXFVIXt + εi

t , (5)

where MKT is the market excess return, FVIX is the mimicking aggregate
volatility factor, and β i

MKT and β i
FVIX are factor loadings on market risk and

aggregate volatility risk, respectively.

7 Our results are unaffected if we use the six Fama–French (1993) 3 × 2 portfolios sorted on size

and book-to-market as the base assets. These results are available upon request.
8 The STR returns are available from January 1986 to December 1995, because it is constructed

from the Berkeley Option Database, which has reliable data only from the late 1980s and ends in

1995.
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To test a factor risk model like equation (5), we must show contemporane-
ous patterns between factor loadings and average returns. That is, if the price
of risk of aggregate volatility is negative, then stocks with high covariation
with FVIX should have low returns, on average, over the same period used to
compute the βFVIX factor loadings and the average returns. By construction,
FVIX allows us to examine the contemporaneous relationship between factor
loadings and average returns and it is the factor that is ex post most highly
correlated with innovations in aggregate volatility. However, while FVIX is the
right factor to test a risk story, FVIX itself is not an investable portfolio because
it is formed with future information. Nevertheless, FVIX can be used as guid-
ance for tradeable strategies that would hedge market volatility risk using the
cross-section of stocks.

In the second column under the heading “Factor Loadings” of Table I, we
report the pre-formation βFVIX loadings that correspond to each of the portfolios
sorted on past β�VIX loadings. The pre-formation βFVIX loadings are computed
by running the regression (5) over daily returns over the past month. The pre-
formation FVIX loadings are very similar to the pre-formation �VIX loadings
for the portfolios sorted on past β�VIX loadings. For example, the pre-formation
βFVIX (β�VIX ) loading for quintile 1 is −2.00 (−2.09), while the pre-formation
βFVIX (β�VIX ) loading for quintile 5 is 2.31 (2.18).

B.5. Post-Formation Factor Loadings

In the next-to-last column of Table I, we report post-formation β�VIX loadings
over the next month, which we compute as follows. After the quintile portfolios
are formed at time t, we calculate daily returns of each of the quintile portfolios
over the next month, from t to t + 1. For each portfolio, we compute the ex post
β�VIX loadings by running the same regression (3) that is used to form the
portfolios using daily data over the next month (t to t + 1). We report the next-
month β�VIX loadings averaged across time. The next-month post-formation
β�VIX loadings range from −0.033 for portfolio 1 to 0.018 for portfolio 5. Hence,
although the ex post β�VIX loadings over the next month are monotonically
increasing, the spread is disappointingly very small.

Finding large spreads in the next-month post-formation β�VIX loadings is
a very stringent requirement and one that would be done in direct tests of a
conditional factor model such as equation (1). Our goal is more modest. We
examine the premium for aggregate volatility using an unconditional factor
model approach, which requires that average returns be related to the uncon-
ditional covariation between returns and aggregate volatility risk. As Hansen
and Richard (1987) note, an unconditional factor model implies the existence
of a conditional factor model. However, to form precise estimates of the con-
ditional factor loadings in a full conditional setting like equation (1) requires
knowledge of the instruments driving the time variation in the betas, as well
as specification of the complete set of factors.

The ex post β�VIX loadings over the next month are computed using, on av-
erage, only 22 daily observations each month. In contrast, the CAPM and FF-3
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alphas are computed using regressions measuring unconditional factor expo-
sure over the full sample (180 monthly observations) of post-ranking returns.
To demonstrate that exposure to volatility innovations may explain some of the
large CAPM and FF-3 alphas, we must show that the quintile portfolios exhibit
different post-ranking spreads in aggregate volatility risk sensitivities over the
entire sample at the same monthly frequency for which the post-ranking re-
turns are constructed. Averaging a series of ex post conditional 1-month covari-
ances does not provide an estimate of the unconditional covariation between
the portfolio returns and aggregate volatility risk.

To examine ex post factor exposure to aggregate volatility risk consistent
with a factor model approach, we compute post-ranking FVIX betas over the
full sample.9 In particular, since the FF-3 alpha controls for market, size, and
value factors, we compute ex post FVIX factor loadings also controlling for these
factors in a four-factor post-formation regression,

ri
t = αi + βi

MKTMKTt + βi
SMBSMBt + βi

HMLHMLt

+ βi
FVIXFVIXt + εi

t , (6)

where the first three factors MKT, SMB, and HML constitute the FF-3 model’s
market, size, and value factors. To compute the ex post βFVIX loadings, we run
equation (6) using monthly frequency data over the whole sample, where the
portfolios on the left-hand side of equation (6) are the quintile portfolios in Table
I that are sorted on past loadings of β�VIX using equation (3).

The last column of Table I shows that the portfolios sorted on past β�VIX
exhibit strong patterns of post-formation factor loadings on the volatility risk
factor FVIX. The ex post βFVIX factor loadings monotonically increase from
−5.06 for portfolio 1 to 8.07 for portfolio 5. We strongly reject the hypothesis
that the ex post βFVIX loadings are equal to zero, with a p-value less than 0.001.
Thus, sorting stocks on past β�VIX provides strong, significant spreads in ex
post aggregate volatility risk sensitivities.10

B.6. Characterizing the Behavior of FVIX

Table II reports correlations among the FVIX factor, �VIX, and STR, as
well as correlations of these variables with other cross-sectional factors. We
denote the daily first difference in VIX as �VIX, [(mark.4(we1t8(these)-397adings)-280 TD
(�)Tj
/F2 1 Tf
0.9738 0 0 6.9738 323.61294213.4(27 Tm
0(mTj
/.9626 0 0 9.9626 343.3(13 298.5917 Tm
[VIX)Tj
/F3 1 Tf
2.182650 TD
[(,o)-224(we1eporse)nt]TJ
-34.3(934-1.2 TD
[(tha)-314.59monthly)-334.59m)-25(irst)-216.44difference)-234.59mn)-376.44dheVIX
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Table II
Factor Correlations

The table reports correlations of first differences in VIX, FVIX, and STR with various factors. The

variable �VIX (�mVIX) represents the daily (monthly) change in the VIX index, and FVIX is the

mimicking aggregate volatility risk factor. The factor STR is constructed by Coval and Shumway

(2001) from the returns of zero-beta straddle positions. The factors MKT, SMB, HML are the Fama

and French (1993) factors, the momentum factor UMD is constructed by Kenneth French, and

LIQ is the Pástor and Stambaugh (2003) liquidity factor. The sample period is January 1986 to

December 2000, except for correlations involving STR, which are computed over the sample period

January 1986 to December 1995.

Panel A: Daily Correlation

�VIX

FVIX 0.91

Panel B: Monthly Correlations

FVIX �mVIX MKT SMB HML UMD LIQ

�mVIX 0.70 1.00 −0.58 −0.18 0.22 −0.11 −0.33

FVIX 1.00 0.70 −0.66 −0.14 0.26 −0.25 −0.40

STR 0.75 0.83 −0.39 −0.39 0.08 −0.26 −0.59

frequency, with a correlation of 0.91. At the monthly frequency, the correlation
between FVIX and �mVIX is lower, at 0.70. The factors FVIX and STR have a
high correlation of 0.83, which indicates that FVIX, formed from stock returns,
behaves like the STR factor constructed from option returns. Hence, FVIX cap-
tures option-like behavior in the cross-section of stocks. The factor FVIX is
negatively contemporaneously correlated with the market return (−0.66), re-
flecting the fact that when volatility increases, market returns are low. The
correlations of FVIX with SMB and HML are −0.14 and 0.26, respectively. The
correlation between FVIX and UMD, a factor capturing momentum returns, is
also low at −0.25.

In contrast, there is a strong negative correlation between FVIX and the
Pástor and Stambaugh (2003) liquidity factor, LIQ, at −0.40. The LIQ factor
decreases in times of low liquidity, which tend to also be periods of high volatil-
ity. One example of a period of low liquidity with high volatility is the 1987 crash
(see, among others, Jones (2003) and Pástor and Stambaugh (2003)). However,
the correlation between FVIX and LIQ is far from −1, indicating that volatility
risk and liquidity risk may be separate effects, and may be separately priced.
In the next section, we conduct a series of robustness checks designed to dis-
entangle the effects of aggregate volatility risk from other factors, including
liquidity risk.

C. Robustness

In this section, we conduct a series of robustness checks in which we specify
different models for the conditional mean of VIX, we use windows of different
estimation periods to form the β�VIX portfolios, and we control for potential
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cross-sectional pricing effects due to book-to-market, size, liquidity, volume,
and momentum factor loadings or characteristics.

C.1. Robustness to Different Conditional Means of VIX

We first investigate the robustness of our results to the method measuring
innovations in VIX. We use the change in VIX at a daily frequency to measure
the innovation in volatility because VIX is a highly serially correlated series.
However, VIX appears to be a stationary series, and using �VIX as the innova-
tion in VIX
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formation periods causes less turnover; however, using more data provides less
precise conditional estimates. The longer the formation window, the less these
conditional estimates are relevant at time t, and the lower the spread in the
pre-formation β�VIX loadings. By using only information over the past month,
we obtain an estimate of the conditional factor loading much closer to time t.

C.3. Robustness to Book-to-Market and Size Characteristics

Small growth firms are typically firms with option values that would be
expected to do well when aggregate volatility increases. The portfolio of small
growth firms is also one of the Fama–French (1993) 25 portfolios sorted on size
and book-to-market that is hardest to price by standard factor models (see, for
example, Hodrick and Zhang (2001)). Could the portfolio of stocks with high
aggregate volatility exposure have a disproportionately large number of small
growth stocks?

Investigating this conjecture produces mixed results. If we exclude only the
portfolio among the 25 Fama–French portfolios with the smallest growth firms
and repeat the quintile portfolio sorts in Table I, we find that the 5-1 mean
difference in returns is reduced in magnitude from −1.04% for all firms to
−0.63% per month, with a t-statistic of −3.30. Excluding small growth firms
produces a FF-3 alpha of −0.44% per month for the zero-cost portfolio that goes
long portfolio 5 and short portfolio 1, which is no longer significant at the 5%
level (t-statistic is −1.79), compared to the value of −0.83% per month with all
firms. These results suggest that small growth stocks may play a role in the
β�VIX quintile sorts of Table I.

However, a more thorough characteristic-matching procedure suggests that
size or value characteristics do not completely drive the results. Table III re-
ports mean returns of the β�VIX portfolios characteristic matched by size and
book-to-market ratios, following the method proposed by Daniel et al. (1997).
Every month, each stock is matched with one of the Fama–French 25 size
and book-to-market portfolios according to its size and book-to-market char-
acteristics. The table reports value-weighted simple returns in excess of the
characteristic-matched returns. Table III shows that characteristic controls for
size and book-to-market decrease the magnitude of the raw 5-1 mean return
difference of −1.04% in Table I to −0.90%. If we exclude firms that are members
of the smallest growth portfolio of the Fama–French 25 size-value portfolios, the
magnitude of the mean 5-1 difference decreases to −0.64% per month. However,
the characteristic-controlled differences are still highly significant. Hence, the
low returns to high past β�VIX stocks are not completely driven by a dispropor-
tionate concentration among small growth stocks.

C.4. Robustness to Liquidity Effects

Pástor and Stambaugh (2003) demonstrate that stocks with high liquidity
betas have high average returns. In order for liquidity to be an explanation
behind the spreads in average returns of the β�VIX portfolios, high β�VIX stocks
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Table III
Characteristic Controls for Portfolios Sorted on βΔVIX

The table reports the means and standard deviations of the excess returns on the β�VIX quintile

portfolios characteristic matched by size and book-to-market ratios. Each month, each stock is

matched with one of the Fama and French (1993) 25 size and book-to-market portfolios according

to its size and book-to-market characteristics. The table reports value-weighted simple returns

in excess of the characteristic-matched returns. The columns labeled “Excluding Small, Growth

Firms” exclude the Fama–French portfolio containing the smallest stocks and the firms with the

lowest book-to-market ratios. The row “5-1” refers to the difference in monthly returns between

portfolio 5 and portfolio 1. The p-values of joint tests for all alphas equal to zero are less than 1% for

the panel of all firms and for the panel excluding small, growth firms. Robust Newey–West (1987)

t-statistics are reported in square brackets. The sample period is from January 1986 to December

2000.

Excluding Small,

All Firms Growth Firms

Rank Mean Std. Dev. Mean Std. Dev.

1 0.32 2.11 0.36 1.90

2 0.04 1.25 0.02 0.94

3 0.04 0.94 0.05 0.89

4 −0.11 1.04 −0.10 1.02

5 −0.58 3.39 −0.29 2.17

5-1 −0.90 −0.64

[−3.59] [−3.75]

must have low liquidity betas. To check that the spread in average returns on
the β�VIX portfolios is not due to liquidity effects, we first sort stocks into five
quintiles based on their historical Pástor–Stambaugh liquidity betas. Then,
within each quintile, we sort stocks into five quintiles based on their past β�VIX
coefficient loadings. These portfolios are rebalanced monthly and are value
weighted. After forming the 5 × 5 liquidity beta and β�VIX portfolios, we average
the returns of each β�VIX quintile over the five liquidity beta portfolios. Thus,
these quintile β�VIX portfolios control for differences in liquidity.

We report the results of the Pástor–Stambaugh liquidity control in Panel A
of Table IV, which shows that controlling for liquidity reduces the magnitude
of the 5-1 difference in average returns from −1.04% per month in Table I to
−0.68% per month. However, after controlling for liquidity, we still observe
the monotonically decreasing pattern of average returns of the β�VIX quintile
portfolios. We also find that controlling for liquidity, the FF-3 alpha for the 5-1
portfolio remains significantly negative at −0.55% per month. Hence, liquidity
effects cannot account for the spread in returns resulting from sensitivity to
aggregate volatility risk.

Table IV also reports post-formation βFVIX loadings. Similar to the post-
formation βFVIX loadings in Table I, we compute the post-formation βFVIX co-
efficients using a monthly frequency regression with the four-factor model in
equation (6) to be comparable to the FF-3 alphas over the same sample period.
Both the pre-formation β�VIX and post-formation βFVIX loadings increase from



Cross-Section of Volatility and Expected Returns 277

Table IV
Portfolios Sorted on βΔVIX Controlling for Liquidity, Volume

and Momentum
In Panel A, we first sort stocks into five quintiles based on their historical liquidity beta, following

Pástor and Stambaugh (2003). Then, within each quintile, we sort stocks based on their β�VIX
loadings into five portfolios. All portfolios are rebalanced monthly and are value weighted. The

five portfolios sorted on β�VIX are then averaged over each of the five liquidity beta portfolios.

Hence, they are β�VIX quintile portfolios controlling for liquidity. In Panels B and C, the same

approach is used except we control for average trading volume (in dollars) over the past month and

past 12-month returns, respectively. The statistics in the columns labeled Mean and Std. Dev. are

measured in monthly percentage terms and apply to total, not excess, simple returns. The table

also reports alphas from CAPM and Fama–French (1993) regressions. The row “5-1” refers to the

difference in monthly returns between portfolio 5 and portfolio 1. The pre-formation betas refer

to the value-weighted β�VIX within each quintile portfolio at the start of the month. We report

the pre-formation β�VIX averaged across the whole sample. The last column reports ex post βFVIX
factor loadings over the whole sample, where FVIX is the factor mimicking aggregate volatility

risk. To correspond with the Fama–French alphas, we compute the ex post betas by running a

four-factor regression with the three Fama–French factors together with the FVIX factor, following

the regression in equation (6). The row labeled “Joint test p-value” reports a Gibbons et al. (1989)

test that the alphas equal zero, and a robust joint test that the factor loadings are equal to zero.

Robust Newey–West (1987) t-statistics are reported in square brackets. The sample period is from

January 1986 to December 2000.

CAPM FF-3 Pre-Formation Post-Formation

Rank Mean Std. Dev. Alpha Alpha β�VIX Loading βFVIX Loading

Panel A: Controlling for Liquidity

1 1.57 5.47 0.21 0.19 −1.89 −1.87

[1.31] [1.34] [−1.65]

2 1.48 4.48 0.27 0.15 −0.43 −2.70

[2.25] [1.68] [−2.78]

3 1.40 4.54 0.15 0.09 0.03 −1.34

[1.59] [0.97] [−1.90]

4 1.30 4.74 0.02 −0.02 0.49 0.49

[0.21] [−0.17] [0.54]

5 0.89 5.84 −0.52 −0.36 1.96 5.38

[−2.87] [−2.09] [4.26]

5-1 −0.68 −0.73 −0.55

[−3.04] [−2.99] [−2.15]

Joint test p-value 0.04 0.01 0.00

(continued)

negative to positive from portfolio 1 to 5, consistent with a risk story. In par-
ticular, the post-formation βFVIX loadings increase from −1.87 for portfolio 1 to
5.38 for portfolio 5. We reject the hypothesis that the ex post βFVIX loadings are
jointly equal to zero with a p-value less than 0.001.

C.5. Robustness to Volume Effects

Panel B of Table IV reports an analogous exercise to that in Panel A except
we control for volume rather than liquidity. Gervais, Kaniel, and Mingelgrin
(2001) find that stocks with high past trading volume earn higher average
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Table IV—Continued

CAPM FF-3 Pre-Formation Post-Formation

Rank Mean Std. Dev. Alpha Alpha β�VIX Loading βFVIX Loading

Panel B: Controlling for Volume

1 1.10 4.73 −0.11 −0.13 −2.08 −3.12

[−0.58] [−1.34] [−3.17]

2 1.18 4.01 0.08 −0.08 −0.47 −3.39

[0.46] [−0.92] [−4.19]

3 1.18 3.78 0.10 −0.04 0.04 −2.84

[0.66] [−0.50] [−4.84]

4 0.98 4.18 −0.17 −0.23 0.55 0.14

[−1.06] [2.16] [0.24]

5 0.38 5.31 −0.90 −0.71 2.17 4.29

[−3.86] [−4.84] [5.07]

5-1 −0.72 −0.79 −0.58

[−3.49] [−3.22] [−3.03]

Joint test p-value 0.00 0.00 0.00

Panel C: Controlling for Past 12-Month Returns

1 1.25 5.55 −0.11 −0.17 −2.03 0.39

[−0.64] [−1.08] [0.28]

2 1.19 4.87 −0.08 −0.19 −0.49 0.82

[−0.57] [−1.54] [0.68]

3 1.28 4.76 0.02 −0.08 0.03 0.97

[0.15] [−0.73] [0.89]

4 1.06 4.88 −0.22 −0.27 0.56 4.86

[−1.64] [−2.26] [5.50]

5 0.36 5.87 −1.05 −0.90 2.11 7.17

[−5.01] [−4.72] [5.50]

5-1 −0.89 −0.93 −0.74

[−4.72] [−4.00] [−3.42]

Joint test p-value 0.00 0.00 0.00

returns than stocks with low past trading volume. It could be that the low
average returns (and alphas) we find for stocks with high βFVIX loadings are
just stocks with low volume. Panel B shows that this is not the case. In Panel
B, we control for volume by first sorting stocks into quintiles based on their
trading volume over the past month. We then sort stocks into quintiles based
on their βFVIX loading and average across the volume quintiles. After controlling
for volume, the FF-3 alpha of the 5-1 long–short portfolio remains significant
at the 5% level at −0.58% per month. The post-formation βFVIX loadings also
monotonically increase from portfolio 1 to 5.

C.6. Robustness to Momentum Effects

Our last robustness check controls for the Jegadeesh and Titman (1993) mo-
mentum effect in Panel C. Since Jegadeesh and Titman report that stocks with
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low past returns, or past loser stocks, continue to have low future returns,
stocks with high past β�VIX loadings may tend to also be loser stocks. Control-
ling for past 12-month returns reduces the magnitude of the raw −1.04% per
month difference between stocks with low and high βFVIX loadings to −0.89%,
but the 5-1 difference remains highly significant. The CAPM and FF-3 alphas
of the portfolios constructed to control for momentum are also significant at
the 1% level. Once again, the post-formation βFVIX loadings are monotoni-
cally increasing from portfolio 1 to 5. Hence, momentum cannot account for
the low average returns to stocks with high sensitivities to aggregate volatility
risk.

D. The Price of Aggregate Volatility Risk

Tables III and IV demonstrate that the low average returns to stocks with
high past sensitivities to aggregate volatility risk cannot be explained by size,
book-to-market, liquidity, volume, or momentum effects. Moreover, Tables III
and IV also show strong ex post spreads in the FVIX factor. Since this evidence
supports the case that aggregate volatility is a priced risk factor in the cross-
section of stock returns, the next step is to estimate the cross-sectional price of
volatility risk.

To estimate the factor premium λFVIX on the mimicking volatility factor FVIX,
we first construct a set of test assets whose factor loadings on market volatility
risk are sufficiently disperse so that the cross-sectional regressions have rea-
sonable power. We construct 25 investible portfolios sorted by βMKT and β�VIX
as follows. At the end of each month, we sort stocks based on βMKT, computed
by a univariate regression of excess stock returns on excess market returns
over the past month using daily data. We compute the β�VIX loadings using the
bivariate regression (3) also using daily data over the past month. Stocks are
ranked first into quintiles based on βMKT and then within each βMKT quintile
into β�VIX quintiles.

Jagannathan and Wang (1996) show that a conditional factor model like equa-
tion (1) has the form of a multifactor unconditional model, where the original
factors enter as well as additional factors associated with the time-varying
information set. In estimating an unconditional cross-sectional price of risk
for the aggregate volatility factor FVIX, we recognize that additional factors
may also affect the unconditional expected return of a stock. Hence, in our full
specification, we estimate the following cross-sectional regression that includes
FF-3, momentum (UMD), and liquidity (LIQ) factors:

ri
t = c + βi

MKTλMKT + βi
FVIXλFVIX + βi

SMBλSMB

+βi
HMLλHML + βi

UMDλUMD + βi
LIQλLIQ + εi

t , (7)

where the λs represent unconditional prices of risk of the various factors. To
check robustness, we also estimate the cross-sectional price of aggregate volatil-
ity risk by using the Coval and Shumway (2001) STR factor in place of FVIX
in equation (7).
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We use the 25βMKT × β�VIX base assets to estimate factor premiums in equa-
tion (7) following the two-step procedure of Fama–MacBeth (1973). In the first
stage, betas are estimated using the full sample. In the second stage, we use
cross-sectional regressions to estimate the factor premia. We are especially in-
terested in ex post factor loadings on the FVIX aggregate volatility factor, and
the price of risk of FVIX. Panel A of Table V reports the results. In addition
to the standard Fama and French (1993) factors MKT, SMB, and HML, we
include the momentum factor UMD and Pástor and Stambaugh’s (2003) non-
traded liquidity factor, LIQ. We estimate the cross-sectional risk premium for
FVIX together with the Fama–French model in Regression I. In Regression II,
we check robustness of our results by using Coval and Shumway’s (2001) STR
option factor. Regressions III and IV also include the additional regressors UMD
and LIQ.

In general, Panel A shows that the premiums of the standard factors (MKT,
SMB, HML) are estimated imprecisely with this set of base assets. The premium
on SMB
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Table V
Estimating the Price of Volatility Risk

Panel A reports the Fama–MacBeth (1973) factor premiums on 25 portfolios sorted first on βMKT
and then on β�VIX . MKT is the excess return on the market portfolio, FVIX is the mimicking

factor for aggregate volatility innovations, STR is Coval and Shumway’s (2001) zero-beta straddle

return, SMB and HML are the Fama–French (1993) size and value factors, UMD is the momentum

factor constructed by Kenneth French, and LIQ is the aggregate liquidity measure from Pástor

and Stambaugh (2003). In Panel B, we report ex post factor loadings on FVIX, from the regression

specification I (Fama–French model plus FVIX). Robust t-statistics that account for the errors-in-

variables for the first-stage estimation in the factor loadings are reported in square brackets. The

sample period is from January 1986 to December 2000, except for the Fama–MacBeth regressions

with STR, which are from January 1986 to December 1995.

Panel A: Fama–MacBeth (1973) Factor Premiums

I II III IV

Constant −0.145 −0.527 −0.202 −0.247

[−0.23] [−0.88] [−0.31] [−0.36]

MKT 0.977 1.276 1.034 1.042

[1.11] [1.47] [1.13] [1.13]

FVIX −0.080 −0.082 −0.071

[−2.49] [−2.39] [−2.02]

STR −0.194

[−2.32]

SMB −0.638 −0.246 −0.608 −0.699

[−1.24] [−0.59] [−1.13] [−1.25]

HML −0.590 −0.247 −0.533 −0.232

[−0.95] [−0.40] [−0.82] [−0.34]

UMD 0.827 0.612

[0.83] [0.59]

LIQ −0.021

[−1.00]

Adj R2 0.67 0.56 0.65 0.79

Panel B: Ex Post Factor Loadings on FVIX

Pre-ranking on β�VIX
Pre-ranking

on βMKT 1 low 2 3 4 5

Low 1 −1.57 −5.89 −3.83 −3.35 −1.03

[−0.46] [−3.23] [−1.93] [−1.99] [−0.45]

2 −3.49 −4.47 −4.01 −2.00 −0.54

[−1.67] [−3.18] [−3.11] [−1.66] [−0.31]

3 −5.74 −3.49 −2.56 −0.95 3.72

[−3.16] [−2.84] [−2.21] [−0.78] [2.30]

4 −5.80 −1.41 −0.34 3.39 6.66

[−4.13] [−1.00] [−0.29] [2.69] [3.85]

High 5 −3.69 −0.57 3.52 7.81 11.70

[−2.05] [−0.45] [1.76] [3.32] [3.13]
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From the estimated price of volatility risk of −0.08% per month in Table V,
we revisit Table I to measure how much exposure to aggregate volatility risk
accounts for the large spread in the ex post raw returns of −1.04% per month
between the quintile portfolios with the lowest and highest past β�VIX coeffi-
cients. In Table I, the ex post spread in FVIX betas between portfolios 5 and 1 is
8.07 − (−5.06) = 13.13. The estimate of the price of volatility risk is −0.08% per
month. Hence, the ex post 13.13 spread in the FVIX factor loadings accounts for
13.13 × −0.080 = −1.05% of the difference in average returns, which is almost
exactly the same as the ex post −1.04% per month number for the raw average
return difference between quintile 5 and quintile 1. Hence, virtually all of the
large difference in average raw returns in the β�VIX portfolios can be attributed
to exposure to aggregate volatility risk.

E. A Potential Peso Story?

Despite being statistically significant, the estimates of the price of aggregate
volatility risk from Table V are small in magnitude (−0.08% per month, or
approximately −1% per annum). Given these small estimates, an alternative
explanation behind the low returns to high β�VIX stocks is a Peso problem. By
construction, FVIX does well when the VIX index jumps upward. The small
negative mean of FVIX of −0.08% per month may be due to having observed a
smaller number of volatility spikes than the market expected ex ante.

Figure 1 shows that there are two episodes of large volatility spikes in our
sample coinciding with large negative moves of the market: October 1987 and
August 1998. In 1987, VIX volatility jumped from 22% at the beginning of Oc-
tober to 61% at the end of October. At the end of August 1998, the level of VIX
reached 48%. The mimicking factor FVIX returned 134% during October 1987,
and 33.6% during August 1998. Since the cross-sectional price of risk of FVIX
is −0.08% per month, from Table V, the cumulative return over the 180 months
in our sample period is −14.4%. A few more large values could easily change
our inference. For example, only one more crash, with an FVIX return of the
same order of magnitude as the August 1998 episode, would be enough to gen-
erate a positive return on the FVIX factor. Using a power law distribution for
extreme events, following Gabaix et al. (2003), we would expect to see approxi-
mately three large market crashes below three standard deviations during this
period. Hence, the ex ante probability of having observed another large spike
in volatility during our sample is quite likely.

Hence, given our short sample, we cannot rule out a potential Peso story and,
thus, we are not extremely confident about the long-run price of risk of aggre-
gate volatility. Nevertheless, if volatility is a systematic factor as asset pricing
theory implies, market volatility risk should be reflected in the cross-section
of stock returns. The cross-sectional Fama–MacBeth (1973) estimates of the
negative price of risk of FVIX are consistent with a risk-based story, and our
estimates are highly statistically significant with conventional asymptotic dis-
tribution theory that is designed to be robust to conditional heteroskedasticity.
However, since we cannot convincingly rule out a Peso problem explanation,
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our −1% per annum cross-sectional estimate of the price of risk of aggregate
volatility must be interpreted with caution.

II. Pricing Idiosyncratic Volatility in the Cross-Section

The previous section examines how systematic volatility risk affects cross-
sectional average returns by focusing on portfolios of stocks sorted by their
sensitivities to innovations in aggregate volatility. In this section, we investi-
gate a second set of assets sorted by idiosyncratic volatility defined relative to
the FF-3 model. If market volatility risk is a missing component of systematic
risk, standard models of systematic risk, such as the CAPM or the FF-3 model,
should misprice portfolios sorted by idiosyncratic volatility because these mod-
els do not include factor loadings measuring exposure to market volatility risk.

A. Estimating Idiosyncratic Volatility

A.1. Definition of Idiosyncratic Volatility

Given the failure of the CAPM to explain cross-sectional returns and the
ubiquity of the FF-3 model in empirical financial applications, we concentrate
on idiosyncratic volatility measured relative to the FF-3 model

ri
t = αi + βi

MKTMKTt + βi
SMBSMBt + βi

HMLHMLt + εi
t . (8)

We define idiosyncratic risk as
√

var(εi
t) in equation (8). When we refer to

idiosyncratic volatility, we mean idiosyncratic volatility relative to the FF-3
model. We also consider sorting portfolios on total volatility, without using any
control for systematic risk.

A.2. A Trading Strategy

To examine trading strategies based on idiosyncratic volatility, we describe
portfolio formation strategies based on an estimation period of L months, a
waiting period of M months, and a holding period of N months. We describe an
L/M/N strategy as follows. At month t, we compute idiosyncratic volatilities
from the regression (8) on daily data over an L-month period from month t −
L − M to month t − M. At time t, we construct value-weighted portfolios based
on these idiosyncratic volatilities and hold these portfolios for N months. We
concentrate most of our analysis on the 1/0/1 strategy, in which we simply sort
stocks into quintile portfolios based on their level of idiosyncratic volatility
computed using daily returns over the past month, and we hold these value-
weighted portfolios for 1 month. The portfolios are rebalanced each month. We
also examine the robustness of our results to various choices of L, M, and N.

The construction of the L/M/N portfolios for L > 1 and N > 1 follows Je-
gadeesh and Titman (1993), except our portfolios are value weighted. For ex-
ample, to construct the 12/1/12 quintile portfolios, each month we construct a
value-weighted portfolio based on idiosyncratic volatility computed from daily
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data over the 12 months of returns ending 1 month prior to the formation date.
Similarly, we form a value-weighted portfolio based on 12 months of returns
ending 2 months prior, 3 months prior, and so on up to 12 months prior. Each
of these portfolios is value weighted. We then take the simple average of these
12 portfolios. Hence, each quintile portfolio changes 1/12th of its composition
each month, where each 1/12th part of the portfolio consists of a value-weighted
portfolio. The first (fifth) quintile portfolio consists of 1/12th of the lowest value-
weighted (highest) idiosyncratic stocks from 1 month ago, 1/12th of the value-
weighted lowest (highest) idiosyncratic stocks from 2 months ago, etc.

B. Patterns in Average Returns for Idiosyncratic Volatility

Table VI reports average returns of portfolios sorted on total volatility, with no
controls for systematic risk, in Panel A and of portfolios sorted on idiosyncratic
volatility in Panel B.12 We use a 1/0/1 strategy in both cases. Panel A shows that
average returns increase from 1.06% per month going from quintile 1 (low total
volatility stocks) to 1.22% per month for quintile 3. Then, average returns drop
precipitously. Quintile 5, which contains stocks with the highest total volatility,
has an average total return of only 0.09% per month. The FF-3 alpha for quintile
5, reported in the last column, is −1.16% per month, which is highly statistically
significant. The difference in the FF-3 alphas between portfolio 5 and portfolio
1 is −1.19% per month, with a robust t-statistic of −5.92.

We obtain similar patterns in Panel B, where the portfolios are sorted on
idiosyncratic volatility. The difference in raw average returns between quintile
portfolios 5 and 1 is −1.06% per month. The FF-3 model is clearly unable to
price these portfolios since the difference in the FF-3 alphas between portfolio
5 and portfolio 1 is −1.31% per month, with a t-statistic of −7.00. The size and
book-to-market ratios of the quintile portfolios sorted by idiosyncratic volatility
also display distinct patterns. Stocks with low (high) idiosyncratic volatility are
generally large (small) stocks with low (high) book-to-market ratios. The risk
adjustment of the FF-3 model predicts that quintile 5 stocks should have high,
not low, average returns.

The findings in Table VI are provocative, but there are several concerns raised
by the anomalously low returns of quintile 5. For example, although quintile 5
contains 20% of the stocks sorted by idiosyncratic volatility, quintile 5 is only a
small proportion of the value of the market (only 1.9% on average). Are these
patterns repeated if we only consider large stocks, or only stocks traded on the
NYSE? The next section examines these questions. We also examine whether
the phenomena persist if we control for a large number of cross-sectional effects
that the literature has identified either as potential risk factors or anomalies.
In particular, we control for size, book-to-market, leverage, liquidity, volume,

12 If we compute idiosyncratic volatility relative to the CAPM, we obtain almost identical results

to Panel B of Table VI. Each quintile portfolio of idiosyncratic volatility relative to the CAPM has a

correlation of above 99% with its corresponding quintile counterpart when idiosyncratic volatility

is computed relative to the FF-3 model.
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Table VI
Portfolios Sorted by Volatility

We form value-weighted quintile portfolios every month by sorting stocks based on total volatility

and idiosyncratic volatility relative to the Fama–French (1993) model. Portfolios are formed every

month, based on volatility computed using daily data over the previous month. Portfolio 1 (5) is

the portfolio of stocks with the lowest (highest) volatilities. The statistics in the columns labeled

Mean and Std. Dev. are measured in monthly percentage terms and apply to total, not excess,

simple returns. Size reports the average log market capitalization for firms within the portfolio

and B/M reports the average book-to-market ratio. The row “5-1” refers to the difference in monthly

returns between portfolio 5 and portfolio 1. The Alpha columns report Jensen’s alpha with respect

to the CAPM or Fama–French (1993) three-factor model. Robust Newey–West (1987) t-statistics

are reported in square brackets. Robust joint tests for the alphas equal to zero are all less than 1%

for all cases. The sample period is July 1963 to December 2000.

Std. % Mkt CAPM FF-3

Rank Mean Dev. Share Size B/M Alpha Alpha

Panel A: Portfolios Sorted by Total Volatility

1 1.06 3.71 41.7% 4.66 0.88 0.14 0.03

[1.84] [0.53]

2 1.15 4.48 33.7% 4.70 0.81 0.13 0.08

[2.14] [1.41]

3 1.22 5.63 15.5% 4.10 0.82 0.07 0.12

[0.72] [1.55]

4 0.99 7.15 6.7% 3.47 0.86 −0.28 −0.17

[−1.73] [−1.42]

5 0.09 8.30 2.4% 2.57 1.08 −1.21 −1.16

[−5.07] [−6.85]

5-1 −0.97 −1.35 −1.19

[−2.86] [−4.62] [−5.92]

Panel B: Portfolios Sorted by Idiosyncratic Volatility Relative to FF-3

1 1.04 3.83 53.5% 4.86 0.85 0.11 0.04

[1.57] [0.99]

2 1.16 4.74 27.4% 4.72 0.80 0.11 0.09

[1.98] [1.51]

3 1.20 5.85 11.9% 4.07 0.82 0.04 0.08

[0.37] [1.04]

4 0.87 7.13 5.2% 3.42 0.87 −0.38 −0.32

[−2.32] [−3.15]

5 −0.02 8.16 1.9% 2.52 1.10 −1.27 −1.27

[−5.09] [−7.68]

5-1 −1.06 −1.38 −1.31

[−3.10] [−4.56] [−7.00]

turnover, bid–ask spreads, coskewness, dispersion in analysts’ forecasts, and
momentum effects.

C. Controlling for Various Cross-Sectional Effects

Table VII examines the robustness of our results with the 1/0/1 idiosyncratic
volatility portfolio formation strategy to various cross-sectional risk factors. The
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Table VII
Alphas of Portfolios Sorted on Idiosyncratic Volatility

The table reports Fama and French (1993) alphas, with robust Newey–West (1987) t-statistics in square

brackets. All the strategies are 1/0/1 strategies described in Section II.A for idiosyncratic volatility com-

puted relative to FF-3, but control for various effects. The column “5-1” refers to the difference in FF-3

alphas between portfolio 5 and portfolio 1. In the panel labeled “NYSE Stocks Only,” we sort stocks into

quintile portfolios based on their idiosyncratic volatility, relative to the FF-3 model, using only NYSE

stocks. We use daily data over the previous month and rebalance monthly. In the panel labeled “Size

Quintiles,” each month we first sort stocks into five quintiles on the basis of size. Then, within each size

quintile, we sort stocks into five portfolios sorted by idiosyncratic volatility. In the panels controlling for

size, liquidity volume, and momentum, we perform a double sort. Each month, we first sort stocks based

on the first characteristic (size, book-to-market, leverage, liquidity, volume, turnover, bid–ask spreads,

or dispersion of analysts’ forecasts) and then, within each quintile we sort stocks based on idiosyncratic

volatility relative to the FF-3 model. The five idiosyncratic volatility portfolios are then averaged over

each of the five characteristic portfolios. Hence, they represent idiosyncratic volatility quintile portfolios

controlling for the characteristic. Liquidity represents the Pástor and Stambaugh (2003) historical liq-

uidity beta, leverage is defined as the ratio of total book value of assets to book value of equity, volume

represents average dollar volume over the previous month, turnover represents volume divided by the

total number of shares outstanding over the past month, and the bid–ask spread control represents the

average daily bid–ask spread over the previous month. The coskewness measure is computed following

Harvey and Siddique (2000) and the dispersion of analysts’ forecasts is computed by Diether et al. (2002).

The sample period is July 1963 to December 2000 for all controls with the exceptions of liquidity (February

1968 to December 2000), the dispersion of analysts’ forecasts (February 1983 to December 2000), and the

control for aggregate volatility risk (January 1986 to December 2000). All portfolios are value weighted.

Ranking on Idiosyncratic Volatility

1 Low 2 3 4 5 High 5-1

NYSE Stocks Only 0.06 0.04 0.02 −0.04 −0.60 −0.66
[1.20] [0.75] [0.30] [−0.40] [−5.14] [−4.85]

Size Quintiles Small 1 0.11 0.26 0.31 0.06 −0.43 −0.55
[0.72] [1.56] [1.76] [0.29] [−1.54] [−1.84]

2 0.19 0.20 −0.07 −0.65 −1.73 −1.91
[1.49] [1.74] [−0.67] [−5.19] [−8.14] [−7.69]

3 0.12 0.21 0.03 −0.27 −1.49 −1.61
[1.23] [2.40] [0.38] [−3.36] [−10.1] [−7.65]

4 0.03 0.22 0.17 −0.03 −0.82 −0.86
[0.37] [2.57] [2.47] [−0.45] [−6.61] [−4.63]

Large 5 0.09 0.04 0.03 0.14 −0.17 −0.26
[1.62] [0.72] [0.51] [1.84] [−1.40] [−1.74]

Controlling for Size 0.11 0.18 0.09 −0.15 −0.93 −1.04
[1.30] [2.49] [1.35] [−1.99] [−6.81] [−5.69]

Controlling for Book-to-Market 0.61 0.69 0.71 0.50 −0.19 −0.80
[3.02] [2.80] [2.49] [1.47] [−0.48] [−2.90]

Controlling for Leverage 0.11 0.11 0.08 −0.24 −1.12 −1.23
[2.48] [2.20] [1.19] [−2.45] [−7.81] [−7.61]

Controlling for Liquidity 0.08 0.09 −0.01 −0.16 −1.01 −1.08
[1.71] [1.53] [−0.09] [−1.62] [−8.61] [−7.98]

Controlling for Volume −0.03 0.02 −0.01 −0.39 −1.25 −1.22
[−0.49] [0.39] [−0.32] [−7.11] [−10.9] [−8.04]

Controlling for Turnover 0.11 0.03 −0.11 −0.49 −1.34 −1.46
[2.49] [0.58] [−1.79] [−6.27] [−11.0] [−10.7]

Controlling for Bid–Ask Spreads −0.07 −0.01 −0.09 −0.49 −1.26 −1.19
[−1.21] [−0.18] [−1.14] [−5.36] [−9.13] [−6.95]

Controlling for Coskewness −0.02 −0.00 0.01 −0.37 −1.40 −1.38
[−0.32] [−0.02] [0.08] [−2.30] [−6.07] [−5.02]

Controlling for Dispersion 0.12 −0.07 0.11 0.01 −0.27 −0.39
in Analysts’ Forecasts [1.57] [−0.76] [1.12] [0.09] [−1.76] [−2.09]
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table reports FF-3 alphas, the difference in FF-3 alphas between the quintile
portfolios with the highest and lowest idiosyncratic volatilities, together with
t-statistics to test their statistical significance.13 All the portfolios formed on
idiosyncratic volatility remain value weighted.

C.1. Using Only NYSE Stocks

We examine the interaction of the idiosyncratic volatility effect with firm
size in two ways. First, we rank stocks based on idiosyncratic volatility using
only NYSE stocks. Excluding NASDAQ and AMEX has little effect on our re-
sults. The highest quintile of idiosyncratic volatility stocks has an FF-3 alpha of
−0.60% per month. The 5-1 difference in FF-3 alphas is still large in magnitude,
at −0.66% per month, with a t-statistic of −4.85. While restricting the universe
of stocks to only the NYSE mitigates the concern that the idiosyncratic volatil-
ity effect is concentrated among small stocks, it does not completely remove
this concern because the NYSE universe still contains small stocks.

C.2. Controlling for Size

Our second examination of the interaction of idiosyncratic volatility and size
uses all firms. We control for size by first forming quintile portfolios ranked
on market capitalization. Then, within each size quintile, we sort stocks into
quintile portfolios ranked on idiosyncratic volatility. Thus, within each size
quintile, quintile 5 contains the stocks with the highest idiosyncratic volatility.

The second panel of Table VII shows that in each size quintile, the highest
idiosyncratic volatility quintile has a dramatically lower FF-3 alpha than the
other quintiles. The effect is not most pronounced among the smallest stocks.
Rather, quintiles 2-4 have the largest 5-1 differences in FF-3 alphas, at −1.91%,
−1.61%, and −0.86% per month, respectively. The average market capitaliza-
tion of quintiles 2-4 is, on average, 21% of the market. The t-statistics of these
alphas are all above 4.5 in absolute magnitude. In contrast, the 5-1 alphas for
the smallest and largest quintiles are actually statistically insignificant at the
5% level. Hence, it is not small stocks that are driving these results.

The row labeled “Controlling for Size” averages across the five size quintiles to
produce quintile portfolios with dispersion in idiosyncratic volatility, but which
contain all sizes of firms. After controlling for size, the 5-1 difference in FF-3
alphas is still −1.04% per month. Thus, market capitalization does not explain
the low returns to high idiosyncratic volatility stocks.

In the remainder of Table VII, we repeat the explicit double-sort characteristic
controls, replacing size with other stock characteristics. We first form portfolios
based on a particular characteristic, then we sort on idiosyncratic volatility,
and finally we average across the characteristic portfolios to create portfolios

13 We emphasize that the difference in mean raw returns between quintile 5 and 1 portfolios is

very similar to the difference in the FF-3 alphas, but we focus on FF-3 alphas as they control for

the standard set of systematic factors.
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that have dispersion in idiosyncratic volatility but contain all aspects of the
characteristic.

C.3. Controlling for Book-to-Market Ratios

It is generally thought that high book-to-market firms have high average
returns. Thus, in order for the book-to-market effect to be an explanation of the
idiosyncratic volatility effect, the high idiosyncratic volatility portfolios must
be primarily composed of growth stocks that have lower average returns than
value stocks. The row labeled “Controlling for Book-to-Market” shows that this
is not the case. When we control for book-to-market ratios, stocks with the
lowest idiosyncratic volatility have high FF-3 alphas, and the 5-1 difference in
FF-3 alphas is −0.80% per month, with a t-statistic of −2.90.

C.4. Controlling for Leverage

Leverage increases expected equity returns, holding asset volatility and asset
expected returns constant. Asset volatility also prevents firms from increasing
leverage. Hence, firms with high idiosyncratic volatility could have high asset
volatility but relatively low equity returns because of low leverage. The next line
of Table VII shows that leverage cannot be an explanation of the idiosyncratic
volatility effect. We measure leverage as the ratio of total book value of assets
to book value of equity. After controlling for leverage, the difference between
the 5-1 alphas is −1.23% per month, with a t-statistic of −7.61.

C.5. Controlling for Liquidity Risk

Pástor and Stambaugh (2003) argue that liquidity is a systematic risk. If liq-
uidity is to explain the idiosyncratic volatility effect, high idiosyncratic volatility
stocks must have low liquidity betas, giving them low returns. We check this
explanation by using the historical Pástor–Stambaugh liquidity betas to mea-
sure exposure to liquidity risk. Controlling for liquidity does not remove the
low average returns of high idiosyncratic volatility stocks. The 5-1 difference in
FF-3 alphas remains large at −1.08% per month, with a t-statistic of −7.98.

C.6. Controlling for Volume

Gervais et al. (2001) find that stocks with higher volume have higher returns.
Perhaps stocks with high idiosyncratic volatility are merely stocks with low
trading volume? When we control for trading volume over the past month, the
5-1 difference in alphas is −1.22% per month, with a t-statistic of −8.04. Hence,
the low returns on high idiosyncratic volatility stocks are robust to controlling
for volume effects.
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C.7. Controlling for Turnover

Our next control is turnover, measured as trading volume divided by the total
number of shares outstanding over the previous month. Turnover is a noisy
proxy for liquidity. Table VII shows that the low alphas on high idiosyncratic
volatility stocks are robust to controlling for turnover. The 5-1 difference in FF-
3 alphas is −1.19% per month, and it is highly significant with a t-statistic of
−8.04. Examination of the individual turnover quintiles (not reported) indicates
that the 5-1 differences in alphas are most pronounced in the quintile portfolio
with the highest, not the lowest, turnover.

C.8. Controlling for Bid-Ask Spreads

An alternative liquidity control is the bid–ask spread, which we measure as
the average daily bid–ask spread over the previous month for each stock. In or-
der for bid–ask spreads to be an explanation, high idiosyncratic volatility stocks
must have low bid–ask spreads and corresponding low returns. Controlling for
bid–ask spreads does little to remove the effect. The FF-3 alpha of the highest
idiosyncratic volatility portfolio is −1.26%, while the 5-1 difference in alphas is
−1.19% and remains highly statistically significant with a t-statistic of −6.95.

C.9. Controlling for Coskewness Risk

Harvey and Siddique (2000) find that stocks with more negative coskewness
have higher returns. Stocks with high idiosyncratic volatility may have pos-
itive coskewness, giving them low returns. Computing coskewness following
Harvey and Siddique (2000), we find that exposure to coskewness risk is not
an explanation. The FF-3 alpha for the 5-1 portfolio is −1.38% per month, with
a t-statistic of −5.02.

C.10. Controlling for Dispersion in Analysts’ Forecasts

Diether, Malloy, and Scherbina (2002) provide evidence that stocks with
higher dispersion in analysts’ earnings forecasts have lower average returns
than stocks with low dispersion of analysts’ forecasts. They argue that disper-
sion in analysts’ forecasts measures differences of opinion among investors.
Miller (1977) shows that if there are large differences in stock valuations and
short sale constraints, equity prices tend to reflect the view of the more opti-
mistic agents, which leads to low future returns for stocks with large dispersion
in analysts’ forecasts.

If stocks with high dispersion in analysts’ forecasts tend to be more volatile
stocks, then we may be finding a similar anomaly to Diether et al. (2002). Over
Diether et al.’s sample period, 1983–2000, we test this hypothesis by performing
a characteristic control for the dispersion of analysts’ forecasts. We take the
quintile portfolios of stocks sorted on increasing dispersion of analysts’ forecasts
(Table VI of Diether et al. (2002, p. 2128)) and within each quintile sort stocks
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on idiosyncratic volatility. Note that this universe of stocks contains mostly
large firms, where the idiosyncratic volatility effect is weaker, because multiple
analysts usually do not make forecasts for small firms.

The last two lines of Table VII present the results for averaging the idiosyn-
cratic volatility portfolios across the forecast dispersion quintiles. The 5-1 dif-
ference in alphas is still −0.39% per month, with a robust t-statistic of −2.09.
While the shorter sample period may reduce power, the dispersion of analysts’
forecasts reduces the noncontrolled 5-1 alpha considerably. However, dispersion
in analysts’ forecasts cannot account for all of the low returns to stocks with
high idiosyncratic volatility.14

D. A Detailed Look at Momentum

Hong, Lim, and Stein (2000) argue that the momentum effect documented
by Jegadeesh and Titman (1993) is asymmetric and has a stronger negative
effect on declining stocks than a positive effect on rising stocks. A potential
explanation behind the idiosyncratic volatility results is that stocks with very
low returns have very high volatility. Of course, stocks that are past winners
also have very high volatility, but loser stocks could be overrepresented in the
high idiosyncratic volatility quintile.

In Table VIII, we perform a series of robustness tests of the idiosyncratic
volatility effect to this possible momentum explanation. In Panel A, we per-
form 5 × 5 characteristic sorts first over past returns, and then over idiosyn-
cratic volatility. We average over the momentum quintiles to produce quintile
portfolios sorted by idiosyncratic risk that control for past returns. We control
for momentum over the previous 1 month, 6 months, and 12 months. Table
VIII shows that momentum is not driving the results. Controlling for returns
over the past month does not remove the very low FF-3 alpha of quintile 5
(−0.59% per month), and the 5-1 difference in alphas is still −0.66% per month,
which is statistically significant at the 1% level. When we control for past 6-
month returns, the FF-3 alpha of the 5-1 portfolio increases in magnitude to
−1.10% per month. For past 12-month returns, the 5-1 alpha is even larger in
magnitude at −1.22% per month. All these differences are highly statistically
significant.

In Panel B, we closely examine the individual 5 × 5 FF-3 alphas of the
quintile portfolios sorted on past 12-month returns and idiosyncratic volatil-
ity. Note that if we average these portfolios across the past 12-month quin-
tile portfolios, and then compute alphas, we obtain the alphas in the row la-
beled “Past 12-months” in Panel A of Table VIII. This more detailed view of the

14 We can also reverse the question and ask if the low average returns of stocks with high dis-

persion of analysts’ forecasts are due to the low returns on stocks with high idiosyncratic volatility

by first sorting stocks on idiosyncratic volatility and then by forecast dispersion. Controlling for

idiosyncratic volatility, the FF-3 alpha for the quintile portfolio, that is long stocks with the highest

forecast dispersion and short stocks in the quintile portfolio with the lowest forecast dispersion, is

−0.36% per month, which is insignificant at the 5% level (the robust t-statistic is −1.47).
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Table VIII
Alphas of Portfolios Sorted on Idiosyncratic Volatility Controlling

for Past Returns
The table reports Fama and French (1993) alphas, with robust Newey–West (1987) t-statistics in

square brackets. All the strategies are 1/0/1 strategies described in Section II.A, but control for past

returns. The column “5-1” refers to the difference in FF-3 alphas between portfolio 5 and portfolio

1. In the first three rows labeled “Past 1-month” to “Past 12-months,” we control for the effect of

momentum. We first sort all stocks on the basis of past returns, over the appropriate formation pe-

riod, into quintiles. Then, within each momentum quintile, we sort stocks into five portfolios sorted

by idiosyncratic volatility, relative to the FF-3 model. The five idiosyncratic volatility portfolios

are then averaged over each of the five characteristic portfolios. Hence, they represent idiosyn-

cratic volatility quintile portfolios controlling for momentum. The second part of the panel lists the

FF-3 alphas of idiosyncratic volatility quintile portfolios within each of the past 12-month return

quintiles. All portfolios are value weighted. The sample period is July 1963 to December 2000.

Ranking on Idiosyncratic Volatility

1 Low 2 3 4 5 High 5-1

Panel A: Controlling for Momentum

Past 1 month 0.07 0.08 0.09 −0.05 −0.59 −0.66

[0.43] [0.94] [1.26] [−0.47] [−3.60] [−2.71]

Past 6 months −0.01 −0.12 −0.28 −0.45 −1.11 −1.10

[−0.20] [−1.86] [−3.60] [−5.20] [−9.35] [−7.18]

Past 12 months 0.01 −0.05 −0.28 −0.64 −1.21 −1.22

[0.15] [−0.76] [−3.56] [−6.95] [−11.5] [−9.20]

Panel B: Past 12-Month Quintiles

Losers 1 −0.41 −0.83 −1.44 −2.11 −2.66 −2.25

[−1.94] [−3.90] [−6.32] [−9.40] [−10.6] [−7.95]

2 −0.08 −0.24 −0.64 −1.09 −1.70 −1.62

[−0.49] [−1.58] [−4.40] [−6.46] [−8.90] [−7.00]

3 −0.06 −0.11 −0.26 −0.48 −1.03 −0.97

[−0.52] [−1.16] [−2.15] [−3.49] [−7.93] [−5.85]

4 0.15 0.07 0.23 −0.03 −0.65 −0.80

[1.57] [0.65] [2.27] [−0.29] [−4.76] [−4.89]

Winners 5 0.45 0.85 0.71 0.52 −0.03 −0.48

[3.52] [5.44] [3.97] [2.63] [−0.13] [−2.01]

interaction between momentum and idiosyncratic volatility reveals several in-
teresting facts.

First, the low returns to high idiosyncratic volatility are most pronounced for
loser stocks. The 5-1 differences in alphas range from −2.25% per month for the
loser stocks, to −0.48% per month for the winner stocks. Second, the tendency
for the momentum effect to be concentrated more among loser, rather than
winner, stocks cannot account for all of the low returns to high idiosyncratic
volatility stocks. The idiosyncratic volatility effect appears significantly in every
past return quintile. Hence, stocks with high idiosyncratic volatility earn low
average returns, no matter whether these stocks are losers or winners.

Finally, the momentum effect itself is also asymmetric across the idiosyn-
cratic volatility quintiles. In the first two idiosyncratic volatility quintiles, the
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alphas of losers (winners) are roughly symmetrical. For example, for stocks
with the lowest idiosyncratic volatilities, the loser (winner) alpha is −0.41%
(0.45%). In the second idiosyncratic volatility quintile, the loser (winner) al-
pha is −0.83% (0.85%). However, as idiosyncratic volatility becomes very high,
the momentum effect becomes highly skewed towards extremely low returns
on stocks with high idiosyncratic volatility. Hence, one way to improve the re-
turns to a momentum strategy is to short past losers with high idiosyncratic
volatility.

E. Is It Exposure to Aggregate Volatility Risk?

A possible explanation for the large negative returns of high idiosyncratic
volatility stocks is that stocks with large idiosyncratic volatilities have large
exposure to movements in aggregate volatility. We examine this possibility in
Table IX. The first row of Panel A reports the results of quintile sorts on id-
iosyncratic volatility, controlling for β�VIX . This is done by first sorting on β�VIX
and then on idiosyncratic volatility, and then averaging across the β�VIX quin-
tiles. We motivate using past β�VIX as a control for aggregate volatility risk
because we have shown that stocks with past high β�VIX loadings have high
future exposure to the FVIX-mimicking volatility factor.

Panel A of Table IX shows that after controlling for aggregate volatility ex-
posure, the 5-1 alpha is −1.19% per month, almost unchanged from the 5-1
quintile idiosyncratic volatility FF-3 alpha of −1.31% in Table VI with no con-
trol for systematic volatility exposure. Hence, it seems that β�VIX accounts for
very little of the low average returns of high idiosyncratic volatility stocks.
Panel B of Table IX reports ex post FVIX factor loadings of the 5 × 5β�VIX and
idiosyncratic volatility portfolios, where we compute the post-formation FVIX
factor loadings using equation (6). We cannot interpret the alphas from this re-
gression, because FVIX is not a tradeable factor, but the FVIX factor loadings
give us a picture of how exposure to aggregate volatility risk may account for
the spreads in average returns on the idiosyncratic volatility sorted portfolios.

Panel B shows that in the first three β�VIX quintiles, we obtain almost mono-
tonically increasing FVIX factor loadings that start with large negative ex post
βFVIX loadings for low idiosyncratic volatility portfolios and end with large pos-
itive ex post βFVIX loadings. However, for the two highest past β�VIX quintiles,
the FVIX factor loadings have absolutely no explanatory power. In summary,
exposure to aggregate volatility partially explains the puzzling low returns to
high idiosyncratic volatility stocks, but only for stocks with very negative and
low past loadings to aggregate volatility innovations.

F. Robustness to Different Formation and Holding Periods

If risk cannot explain the low returns to high idiosyncratic volatility stocks,
are there other explanations? To help disentangle various stories, Table X
reports FF-3 alphas of other L/M/N strategies described in Section II.A.
First, we examine possible contemporaneous measurement errors in the 1/0/1
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Table IX
The Idiosyncratic Volatility Effect Controlling for Aggregate

Volatility Risk
We control for exposure to aggregate volatility using the β�VIX loading at the beginning of the

month, computed using daily data over the previous month following equation (3). We first sort all

stocks on the basis of β�VIX into quintiles. Then, within each β�VIX quintile, we sort stocks into five

portfolios sorted by idiosyncratic volatility, relative to the FF-3 model. In Panel A, we report FF-3

alphas of these portfolios. We average the five idiosyncratic volatility portfolios over each of the

five β�VIX portfolios. Hence, these portfolios represent idiosyncratic volatility quintile portfolios
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Table X
Quintile Portfolios of Idiosyncratic Volatility for L/M/N Strategies

The table reports Fama and French (1993) alphas, with robust Newey–West (1987) t-statistics in

square brackets. The column “5-1” refers to the difference in FF-3 alphas between portfolio 5 and

portfolio 1. We rank stocks into quintile portfolios of idiosyncratic volatility, relative to FF-3, using

L/M/N strategies described in Section II.A. At month t, we compute idiosyncratic volatilities from

the regression (8) on daily data over an L month period from months t − L − M to month t − M.

At time t, we construct value-weighted portfolios based on these idiosyncratic volatilities and hold

these portfolios for N months, following Jegadeesh and Titman (1993), except our portfolios are

value weighted. The sample period is July 1963 to December 2000.

Ranking on Idiosyncratic Volatility

Strategy 1 low 2 3 4 5 High 5-1

1/1/1 0.06 0.04 0.09 −0.18 −0.82 −0.88

[1.47] [0.77] [1.15] [−1.78] [−4.88] [−4.63]

1/1/12 0.03 0.02 −0.02 −0.17 −0.64 −0.67

[0.91] [0.43] [−0.37] [−1.79] [−5.27] [−4.71]

12/1/1 0.04 0.08 −0.01 −0.29 −1.08 −1.12

[1.15] [1.32] [−0.08] [−2.02] [−5.36] [−5.13]

12/1/12 0.04 0.04 −0.02 −0.35 −0.73 −0.77

[1.10] [0.54] [−0.23] [−2.80] [−4.71] [−4.34]

strategy, we still see very low FF-3 alphas for quintile 5, and the 5-1 difference
in alphas is still −0.67% per month, which is highly significant.

By restricting the formation period to L = 1 month, our previous results may
just be capturing various short-term events that affect idiosyncratic volatility.
For example, the portfolio of stocks with high idiosyncratic volatility may be
largely composed of stocks that have just made, or are just about to make, earn-
ings announcements. To ensure that we are not capturing specific short-term
corporate events, we extend our formation period to L = 12 months. The third
row of Table X reports FF-3 alphas for a 12/1/1 strategy. Using one entire year
of daily data to compute idiosyncratic volatility does not remove the anomalous
high idiosyncratic volatility-low average return pattern: The 5-1 difference in
alphas is −1.12% per month. Similarly, the patterns are robust for the 12/1/12
strategy, which has a 5-1 alpha of −0.77% per month.

G. Subsample Analysis

Table XI investigates the robustness of the low returns to stocks with high
idiosyncratic volatility over different subsamples. First, the effect is observed
in every decade from the 1960s to the 1990s. The largest difference in alphas
between portfolio 5 and portfolio 1 occurs during the 1980s, with an FF-3 alpha
of −2.23% per month, and we observe the smallest magnitude of the FF-3 alpha
of the 5-1 portfolio during the 1970s, during which time the FF-3 alpha is
−0.77% per month. In every decade, the effect is highly statistically significant.

A possible explanation for the idiosyncratic volatility effect may be asym-
metry of return distributions across business cycles. Volatility is asymmetric
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Table XI
The Idiosyncratic Volatility Effect over Different Subsamples

The table reports Fama and French (1993) alphas, with robust Newey–West (1987) t-statistics in

square brackets. The column “5-1” refers to the difference in FF-3 alphas between portfolio 5 and

portfolio 1. We rank stocks into quintile portfolios of idiosyncratic volatility, relative to FF-3, using

the 1/0/1 strategy described in Section II.A and examine robustness over different sample periods.

The stable and volatile periods refer to the months with the lowest and highest 20% absolute value

of the market return, respectively. The full sample period is July 1963 to December 2000.

Ranking on Idiosyncratic Volatility

Subperiod 1 Low 2 3 4 5 High 5-1

Jul 1963–Dec 1970 0.06 0.03 0.09 −0.36 −0.94 −1.00

[1.23] [0.42] [0.73] [−2.18] [−5.81] [−5.62]

Jan 1971–Dec 1980 −0.24 0.32 0.19 0.03 −1.02 −0.77

[−2.53] [3.20] [1.55] [0.21] [−5.80] [−3.14]

Jan 1981–Dec 1990 0.15 0.08 −0.16 −0.66 −2.08 −2.23

[2.14] [1.07] [−1.25] [−4.82] [−10.1] [−9.39]

Jan 1991–Dec 2000 0.16 −0.01 0.14 −0.48 −1.39 −1.55

[1.34] [−0.08] [0.77] [−2.41] [−3.31] [−3.19]

NBER Expansions 0.06 0.02 0.08 −0.33 −1.19 −1.25

[1.26] [0.25] [1.01] [−3.18] [−7.07] [−6.55]

NBER Recessions −0.10 0.64 −0.01 −0.34 −1.88 −1.79

[−0.65] [3.58] [−0.04] [−1.32] [−3.32] [−2.63]

Stable Periods 0.05 −0.02 −0.11 −0.62 −1.66 −1.71

[0.44] [−0.25] [−1.07] [−4.06] [−6.56] [−4.75]

Volatile Periods −0.04 0.24 0.32 0.18 −0.93 −0.89

[−0.29] [1.69] [2.32] [0.55] [−2.40] [−2.02]

(and larger with downward moves), so stocks with high idiosyncratic volatil-
ity may have normal average returns during expansionary markets, and their
low returns may mainly occur during bear market periods, or recessions. We
may have observed too many recessions in the sample relative to what agents
expected ex ante. We check this hypothesis by examining the returns of high id-
iosyncratic volatility stocks conditioning on NBER expansions and recessions.
During NBER expansions (recessions), the FF-3 alpha of the 5-1 portfolio is
−1.25% (−1.79%). Both the expansion and recession differences in FF-3 alphas
are significant at the 1% level. There are more negative returns to high id-
iosyncratic volatility stocks during recessions, but the fact that the t-statistic
in NBER expansions is −6.55 shows that the low returns from high idiosyn-
cratic volatility also thrive during expansions.

A final possibility is that the idiosyncratic volatility effect is concentrated
during the most volatile periods in the market. To test for this possibility, we
compute FF-3 alphas of the difference between quintile portfolios 5 and 1 con-
ditioning on periods with the lowest or highest 20% of absolute moves of the
market return. These are ex post periods of low or high market volatility. Dur-
ing stable (volatile) periods, the difference in the FF-3 alphas of the fifth and
first quintile portfolios is −1.71% (−0.89%) per month. Both the differences in
alphas during stable and volatile periods are significant at the 5% level. The
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most negative returns of the high idiosyncratic volatility strategy are earned
during periods when the market is stable. Hence, the idiosyncratic volatility
effect is remarkably robust across different subsamples.

III. Conclusion

Multifactor models of risk predict that aggregate volatility should be a cross-
sectional risk factor. Past research in option pricing has found a negative price
of risk for systematic volatility. Consistent with this intuition, we find that
stocks with high past exposure to innovations in aggregate market volatility
earn low future average returns. We use changes in the VIX index constructed
by the Chicago Board Options Exchange to proxy for innovations in aggregate
volatility.

To find the component of market volatility innovations that is reflected in
equity returns, we construct a factor to mimic innovations in market volatility
following Breeden et al. (1989) and Lamont (2001). We first form portfolios on
the basis of their past sensitivity to first differences in the VIX index. Then,
we project innovations in VIX onto these portfolios to produce a factor that
mimics aggregate volatility risk, which we term FVIX. This portfolio of basis
assets is maximally correlated with the realized aggregate volatility innova-
tions. Portfolios constructed by ranking on past betas to first differences in VIX
also exhibit strong patterns in post-formation FVIX factor loadings. In par-
ticular, the ex post increasing patterns in FVIX factor loadings correspond to
decreasing Fama–French (1993) alphas over the same period that the alphas
are computed.

We estimate a cross-sectional price of volatility risk of approximately −1%
per annum, and this estimate is robust to controlling for size, value, momen-
tum, and liquidity effects. Hence, the decreasing average returns to stocks with
high past sensitivities to changes in VIX is consistent with the cross-section of
returns pricing aggregate volatility risk with a negative sign. However, despite
the statistical significance of the negative volatility risk premium, its small size
and our relatively small sample mean that we cannot rule out a potential Peso
problem explanation. Since the FVIX portfolio does well during periods of mar-
ket distress, adding another volatility spike like October 1987 or August 1998
to our sample would change the sign of the price of risk of FVIX from negative
to positive. Nevertheless, our estimate of a negative price of risk of aggregate
volatility is consistent with a multifactor model or Intertemporal CAPM. In
these settings, aggregate volatility risk is priced with a negative sign because
risk-averse agents reduce current consumption to increase precautionary sav-
ings in the presence of higher uncertainty about future market returns. Our
results are also consistent with the estimates of a negative price of risk for
aggregate volatility estimated by many option pricing studies.

We also examine the returns of a set of test assets that are sorted by id-
iosyncratic volatility relative to the Fama–French (1993) model. We uncover a
very robust result. Stocks with high idiosyncratic volatility have abysmally
low average returns. In particular, the quintile portfolio of stocks with the
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highest idiosyncratic volatility earns total returns of just −0.02% per month
in our sample. These low average returns to stocks with high idiosyncratic
volatility cannot be explained by exposures to size, book-to-market, leverage,
liquidity, volume, turnover, bid-ask spreads, coskewness, or dispersion in ana-
lysts’ forecasts characteristics. The effect also persists in bull and bear markets,
NBER recessions and expansions, volatile and stable periods, and is robust to
considering different formation and holding periods as long as 1 year. Although
we argue that aggregate volatility is a new cross-sectional, systematic factor, ex-
posure to aggregate volatility risk accounts for very little of the anomalous low
returns of stocks with high idiosyncratic volatility. Hence, the cross-sectional
expected return patterns found by sorting on idiosyncratic volatility present
something of a puzzle.
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