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1. Introduction

A widely used approach to credit risk modeling is the so-called structural method, origi-
nated from |Black and Scholes| (1973) and |Merton| (1974). A growing literature has empir-
ically examined the implications of structural models for various nancial variables, such
as credit spreads (Eom, Helwege, and Huang), 2004)), real default probabilities (Leland,
2004), both spreads and default rates (Huang and Huang, [2012), hedge ratios (Schaefer
and Strebulaev, 2008), corporate bond return volatility (Bao and Pan, 2013), and prices
of di erent seniority levels (Bao and Hou, 2017)). The main empirical methods used in this
literature include calibration, rolling estimation, and regressions. Although these methods
are intuitive, easy to implement, and widely used, it is known that, from a statistical point
of view, they have some limitations.

In this paper, we propose an alternative approach to testing structural credit risk mod-
els. More speci cally, we construct a speci cation test based on certain model-implied
variables, such as credit spreads and equity volatility. By assuming that both equity and
credit markets are e cient and that the underlying structural model is correct, we obtain
moment restrictions on model parameters (e.g., asset volatility and default boundary). We
then use generalized method of moments (GMM) of |[Hansen| (1982)) to conduct parameter
estimation as well as speci cation analysis of the structural model. Three aspects of this
GMM-based speci cation test are worth noting. First, the test provides consistent econo-
metric estimation of the model parameters. Second, the test allows us to conduct a precise
inference on whether the model is rejected or not in the data. Third, the test is based
on the joint behavior of time-series asset dynamics and cross-sectional pricing errors for
structural models.

For illustration, we apply the proposed approach to ve a ne, representative structural
models of default that incorporate various economic considerations. For each of the ve
models, we construct its moment conditions using equity volatility and term structures of
single-name credit default swap (CDS) spreads. We then test whether all the restrictions
of the model are satis ed using the GMM, based on the model implied CDS spreads
and equity volatility. By minimizing the e ect of measurement error from using rm

characteristics, this test attributes the test results mostly to the speci cation error. Lastly,
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we examine the ability of the model to explain equity volatility, the CDS term structure,
default rates, sensitivity of CDS spreads to equity returns, etc.

For the purpose of this study, using CDS data has at least two advantages over using
corporate bond data. One is that CDS spread curves are readily available. The other is
that in general the CDS market is more liquid than the corporate bond market. We in-
clude equity return volatility in moment conditions mainly because few empirical studies
have examined the implications of structural models for this second moment variable[]]
In other words, while equity volatility is usually used as an input in the empirical litera-
ture on structural models, this study treats equity volatility as an output of the models.
Additionally, we use the so-called \model-free" realized equity volatility in our empiri-
cal analysis. As it is estimated using intraday high-frequency equity returns and involves
no overlapping observations, realized volatility is more accurate than volatility estimates
based on daily or monthly returns. Moreover, the use of the latter estimates implies that
structural models are implicitly assumed to be able to t perfectly the time series of equity
volatility involving overlapping observations. Lastly, focusing on realized equity volatility
is consistent with the evidence that volatility dynamics has a strong potential in better
explaining credit spreads (e.g., |Zhang, Zhou, and Zhu, 2009).

For reasons of tractability and comparison, we focus on the Merton| (1974) model and
its four extensions with an exogenous default boundary in this study. The four barrier-
type models include the |Black and Cox| (1976) model with a at default boundary, the
Longsta and Schwartz (1995) model with stochastic interest rates, the |Collin-Dufresne
and Goldstein| (2001) model with a stationary leverage, and the double exponential jump

di usion (DEJD) model used in Huang and Huang| (2002) and [Kou (ZOOZ)E]

L There is ample empirical evidence that individual equity volatility is time-varying and
stochastic (see, e.g., the survey articles by |Bollerslev, Chou, and Kroner, 1992} |Bollerslev,
Engle, and Nelson, [1994). This stylized fact should be taken into account in examining
structural models that consider equity to be a contingent claim on the underlying rm
asset value.

2 |Kou| (2002)) develops the rst DEJD-based equity option pricing model. Concurrently,
Ramezani and Zeng| (2007)) use the DEJD to model individual stock returns. Huang and
Huang| (2002} |2012) provide the rst application of the DEJD model in credit risk. Other
examples using the DEJD-based structural model include |[Cremers, Driessen, and Maen-
hout| (2008); |[Bao| (2009); [Chen and Kou| (2009).
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We test each of the ve models using a sample of 93 industrial companies in the U.S.
that have a balanced panel of monthly realized equity volatility and CDS term structure
over the period January 2002{December 2004. As the main purpose of our empirical
analysis is to illustrate the proposed speci cation test of structural models, the choice of
the sample period is not essential to the analysis. Nonetheless, this post dot-com bubble
(and also post the Enron collapse) period includes many major corporate defaults and
\actions.”" On the other hand, relatively \quiet" compared to the recent nancial crisis,
this sample period is less subject to illiquidity concern documented for the corporate bond
market during the nancial crisis (Dick-Nielsen, Feldhutter, and Lando, 2012; |[Friewald,
Jankowitsch, and Subrahmanyam, 2012).

Our GMM-based speci cation tests strongly reject the [Merton, [Black and Cox}, and
Longsta and Schwartzl models. The DEJD model is found to signi cantly outperforms
these three models. The [Collin-Dufresne and Goldstein| model is the best performing one
among the ve models: the model is not rejected by the GMM test for more than half
of the 93 companies in our sample. Nonetheless, the fact that both the DEJD and CDG
models are still rejected by a substantial number of rms in the sample indicates that
something is missing in these models.

The pricing error results from the ve models provide similar evidence. On the one
hand, jumps and dynamic leverage help improve the model t for investment-grade (1G)
and high-yield names, respectively. On the other hand, the ve models all substantially
underestimate both equity volatility and CDS spreads for IG names during 2002 when
credit risk is relatively high. In other words, these models have di culty in capturing the
dynamic behavior of both equity volatility and CDS spreads, especially for IG names |
even though equity volatility in structural models is time-varying.

Interestingly, all ve models, especially the Merton model, fare better in describing the
sensitivity of CDS spreads to equity returns, in terms of the number of rms where the
model-implied sensitivity is not rejected in our sample. Moreover, evidence from the actual
hedging performance indicates that the Merton model surprisingly outperforms the other
four models.

To summarize, this study contributes to the credit risk literature by proposing and

implementing a GMM-based speci cation test of structural models. Importantly, this ap-
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proach, among other things, makes use of the advantages of GMM ] its convenience and
generality (see, e.g., [Jagannathan, Skoulakis, and Wang, 2002). Our empirical ndings
(albeit based on a short sample) shed light on how to improve the existing structural
models. Speci cally, incorporating stochastic asset volatility and jumps into the Merton
(1974) model may improve the ability of the model to predict not only CDS spreads and
equity volatility but also hedge ratios of CDS spreadsE]

The rest of the paper is organized as follows. Section [2] reviews the related literature.
Section[3brie y outlines the class of structural models examined in our empirical analysis.
Section[4] presents our econometric method of parameter estimation and speci cation tests.
Section [5] describes the data used in our analysis, and Section [g] reports and discusses our

empirical ndings. Finally, Section [7] concludes.

2. Related Literature

Empirical studies of structural models go back to [Jones, Mason, and Rosenfeld| (1984)),
who implement a rolling estimation approach. Examples of following this approach in-
clude Eom, Helwege, and Huang| (2004)), Hull, Nelken, and White| (2004), /Arora, Bohn,
and Zhu| (2005), and Bao| (2009). |Huang and Huang (2002, [2012) propose a calibration
approach with representative rms, which is also used in|Chen, Collin-Dufresne, and Gold-
stein|(2008), |Schaefer and Strebulaev| (2008)), |Du, Elkamhi, and Ericsson| (2018])), [McQuade
(2018), and |Shi| (2019). Regression based studies include [Collin-Dufresne, Goldstein, and
Martin| (2001) and |Zhang, Zhou, and Zhu| (2009)). |[Ericsson and Reneby| (2005) and |Pre-
descul (2005) combine a rolling estimation procedure with the MLE approach proposed in

Duan| (1994)).

3 |Du, Elkamhi, and Ericsson| (2018) incorporate stochastic volatility into the [Merton
(1976) jump-di usion model and nd that the resultant SVVJ model for the unlevered
asset value can jointly capture CDS spreads and option-implied volatilities; |[McQuade
(2018) shows that combining stochastic volatility with endogenous default sheds light on
many asset pricing anomalies, including the value premium, nancial distress, and mo-
mentum puzzles. Both studies illustrate that a reasonable calibration for the variance
risk premium allows their stochastic volatility models to match historical corporate yield
spreads for medium and longer maturities, o ering a potential resolution for the credit
spread puzzle (a la|Huang and Huang, 2012)). Other recent studies of the puzzle include
Bai, Goldstein, and Yang| (2018)); [Feldhutter and Schaefer| (2018]).
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Among studies of structural models based on CDS data, [Hull, Nelken, and White
(2004) implement the Merton| (1974) model using a calibration approach. |[Predescul (2005)
examines the Merton model as well as a |Black and Cox| (1976)) type barrier model. |Chen,
Fabozzi, Pan, and Sverdlove| (2006) investigate the Merton, Black-Cox, and Longsta -
Schwartz models. |Bao| (2009) and |Bai and Wu| (2016)) focus on the cross-section of spreads
implied by structural models. Examples of studies that link CDS premiums with variables
from structural credit risk models using a regression analysis include |[Ericsson, Jacobs,
and Oviedo (2009); Zhang, Zhou, and Zhu| (2009).

This paper di ers from the aforementioned studies in that it proposes and conducts
a GMM-based speci cation test of structural models. Additionally, equity volatility is
treated as an output variable in the proposed test.

Our paper also ts in the literature on the implications of structural models for second
moment variables (such as equity return volatility) as well as on their impact on credit
risk. For instance, |Campbell and Taksler| (2003) nd that idiosyncratic equity volatility
can explain a signi cant part of corporate bond yield spreads cross-sectionally. [Huang and
Huang| (2012) conjecture that a structural credit risk model with stochastic asset volatility
may help solve the credit spread puzzle. Huang| (2005) considers an a ne class of structural
models with both stochastic asset volatility and Levy jumps. Based on regression analysis,
Zhang, Zhou, and Zhu| (2009) provide empirical evidence that a stochastic asset volatility
model may improve the model performance. |Perrakis and Zhong| (2015) extend the Leland
and Toft (1996) model to allow for constant elasticity of variance. Kelly, Manzo, and
Palhares| (2016) provide more recent evidence of stochastic asset volatility. See also [Du,
Elkamhi, and Ericsson|(2018)) and|McQuade| (2018). In a closely related study, Bao and Pan
(2013) focus on corporate bond return volatility and document that the volatility implied
from the |Merton (1974) model with stochastic interest rate underestimates substantially
the observed corporate bond return volatility.

The literature on hedge ratios implied by structural models goes back to |Schaefer and
Strebulaev| (2008), who nd that on average, the Merton model-implied sensitivity of
a rm’s corporate bond returns to its equity returns is not statistically di erent from
the in-sample empirically estimated hedge ratios. | Bao and Hou| (2017)) investigate how

a corporate bond’s position in its issuer’s maturity structure a ects its sensitivity to
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the issuer’s equity return. They show that both the direction and the magnitude of this
de facto seniority e ect are consistent with what are implied from an extended Merton
model. Huang and Shi| (2016) examine the actual hedging performance of model-implied
sensitivities of corporate bond returns and spreads, which is equivalent to testing the out-
of-sample explanatory power of the hedging portfolio. Additionally, they document that on
average, the Merton model also captures the in-sample sensitivity of spreads to the equity
return. On the other hand, focusing on pairs of stock returns and CDS spread changes
with the same underlying over a short interval (e.g., ve days), |Kapadia and Pu| (2012))

nd that about 41% of stock returns are associated with CDS spread changes in the same
direction, as opposed to the prediction of the Merton model. This discrepancy is shown
to re ect an imperfect equity-credit market integration at short horizons. [Huang, Rossi,
and Wang (2015) nd similar results based on pairs of stock and corporate bond returns
and also provide evidence that equity market sentiment helps improve the equity-credit
market integration especially after the nancial crisis.

In this study we examine not only hedge ratios but also hedging performance of struc-
tural models. In addition, we go beyond the Merton modeIE]

As mentioned before, we use CDS data instead of corporate bond data in the empirical
analysis, partly to avoid the liquidity problem in the latter market. For recent evidence
on corporate bond illiquidity, see |Bao, Pan, and Wang| (2011); |Chen, Lesmond, and Wei
(2007); |Das and Hanounal (2009); Han and Zhou, (2016)); Helwege, Huang, and Wang
(2014); |Longsta , Mithal, and Neis (2005); Mahanti, Nashikkar, Subrahmanyam, Chacko,
and Mallik| (2008); |Schestag, Schuster, and Uhrig-Homburg (2016)); | Bongaerts, de Jong,
and Driessen| (2017)), among others. In addition, using term structures of CDS spreads
facilitates the implementation of the proposed GMM-based test | it is known that data
on term structures of corporate bond spreads are not easily available for individual rms.

Lastly, note that there is a large theoretical literature on structural credit risk modeling
(see, e.g., Huang and Huang, 2012} |Sundaresan, {2013, and references therein), although

for tractability and comparison we consider only ve structural models in our empirical
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includes those without strategic default, such as|Geske (1977) and |Leland and Toft (1996)),
and strategic default models, such as /Anderson and Sundaresan| (1996), |Mella-Barral and
Perraudin| (1997)), /Acharya and Carpenter| (2002), and |/Acharya, Huang, Subrahmanyam,
and Sundaram| (2006, |2019). Strategic default models of perpetual bonds are considered
in Huang and Huang (2012). Endogenous default models with nite maturity of |Geske
(1977)) and |Leland and Toft| (1996) are examined in |Eom, Helwege, and Huang| (2004).
Another example not covered in this paper is the Du e and Lando| (2001) model with
incomplete accounting information. Additionally, |Francois and Morellec| (2004) examine
the impact of the US bankruptcy procedure on risky debt prices. He and Xiong| (2012)
and |He and Milbradt (2014) consider both rollover risk and corporate bond illiquidity.

3. A ne Structural Credit Risk Models

This section rst reviews the ve structural credit risk models to be tested in our spec-
i cation analysis, and then apply the models to the CDS pricing. Lastly, we discuss the

model implications for equity volatility and sensitivities of CDS spreads to equity return.

3.1 Models

For completeness, below we brie y review the ve structural models to be tested in our
empirical study. Although these models di er in certain economic assumptions, they can be
embedded in the same underlying structure that includes speci cations of the underlying
rm’s asset process, the default boundary, the recovery rate, etc.
LetV be the rm’sasset process, K the default boundary, and r the default-free interest
rate process. Assume that, under a risk-neutral measure Q,
Ne

dv.
Voo = (o= ddte dWEd | D (Z2 - 1) | - © CdtQeAssr

i=1



8 Jing-Zhi Huang et al.

with a constant intensity < > 0, the Z>’s are i.i.d. random variables, and Y Q = In(Z{)

has a double-exponential distribution with a density given by

o Q
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the CDS spread of a T-year CDS contract is given by

1-R)X:

ds(0;T) = ;
o@D ST B(0; TQ(0; Ti)=4

Q)

where R is the recovery and B(0; -) the default-free discount function. X, denotes the price
of the Arrow-Debreu default claim, or equivalently, the present value of one dollar paid

upon default
X, = EQ l:efo r(u)du |{ <T}:| : (7)

where is the default time, r the interest rate process, I, the indicator function, and
EQ[] the expectation under the risk-neutral measure. To simplify the computation, we
follow the literature to make the standard assumption that the settlement of the contract

occurs on the next payment day. It then follows from Eq. @ that

(1-R) 3T, BOT)QEO:Tiy) ~ QT

ds(0; =
kO ST B0, T)Q(0; T4

®

As a result, the implementation of a structural model amounts to the calculation of the
survival probability Q(0;-). In the Merton (1974) and the Black and Cox (1976) models,
Q(0; -) has closed form solutions. The survival probability in the DEJD model and the
two-factor models do not have a known closed-form solution but can be calculated using
a numerical method (see, e.g., [Huang and Huang, |2012, for details).

In addition to CDS spreads, other model-implied credit market variables include CDS
spread changes, CDS volatilities, and corporate bond return volatilities, etc. However,
corporate bond volatilities have a sizable illiquidity component and CDS volatilities might
also be a bit high compared to fundamentals (Bao and Pan, 2013; |Bao, Chen, Hou, and
Lu, [2015). Therefore, given the purpose of this study, we do not consider these second

moment variables in credit markets in our empirical analysis.

3.3 Equity Market Variables

In this subsection we focus on more liquid equity market variables, which have received

relatively little attention in the empirical literature on structural models.
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Consider equity return volatility rst. As pointed out by |Merton| (1974), the delta
function relating the equity volatility and asset volatility is also model-dependent

Ve O,

e(®) = VEN’ (©)

where the equity volatility g(t) is generally time-varying while the asset volatility
may be constant. For the DEJD process, the equity volatility of the continuous di usion
component satis es Eq. (9).

Next, we consider the comovement between CDS and equity, in order to better under-
stand the relative pricing of these two markets as well as the hedge of common exposures
across markets. Following |Schaefer and Strebulaev| (2008), we can express the sensitivity
of CDS spread to the equity of the rm in terms of partial derivatives with respect to the

rm value

cas _ @cds(t; T) _ @cds(t; T)=@V:e _
Bt OE=E¢ a OE=0V, Ee: (10)

As illustrated in Section both @cds(t; T)=0V: and @E=@V. are functions of

@Q(t; )=@Vy, the sensitivity of risk-neutral survival probabilities to asset value. As such,
once Q(t;-) is known, CE"i can be calculated.

Unlike its counterpart for corporate bonds, the hedge ratio for a CDS contract is not
the same as its sensitivity to equity. Instead, the latter hedge ratio is de ned as the dollar
change in the value of the CDS contract for each percentage change in the equity value

@Vl @cds(t; T)

th_S = =
Eit OE=E: OE,

EtZy; (11)

where VthS denotes the time-t value of a CDS contract with a notional of $10 million, and
Zy = Z:‘; B(t; T;)Q(t; Ti) x 2:5 million is de ned as the change in the mark to market

value (in million) for each unit of change in the quoted spreadE]

4. A Speci cation Test of Structural Models

In this section we propose a speci cation test of structural models under the GMM frame-
work of Hansen| (1982). We rst review the framework albeit using moment conditions
5 We use the ISDA CDS Standard model to mark a given CDS contract to market.

Documentation of the model as well as the source code for the model is available at
www.cdsmodel.coml
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pertinent to structure models. We then discuss nite sample properties of GMM. Lastly,

we focus on the implementation of the proposed speci cation test.
4.1 GMM Estimation of Structural Credit Risk Models

As mentioned before, the fundamental pricing relationship implied by a structural model
has implications for credit spreads, equity volatility, default probabilities, leverage, cor-
porate bond returns, corporate bond return volatility, hedge ratios, etc. To evaluate the
model, we rst estimate the model parameters that may include asset volatility, default
barrier, asset jump intensity, or dynamic leverage coe cients, etc. Let denote the vector
of the model parameters to be estimated and " the estimated vector. We then take ~ as
given and examine the pricing performance of the (estimated) model. Below we describe
how to implement this idea using GMM, following largely |Cochrane| (2009).

As noted before, we focus on model-implied CDS spreads and equity volatility in the
empirical analysis. Let cds(t;t+ T,) and g(t) be the time-t CDS spread with matu-
rity t+ T, and equity volatility under a given structural model, speci ed in Egs.
and @ respectively. Let cﬁs(t;t + Tm) and ~g(t) be the time-t observed counterparts of
cds(t;t+Ty,) and g (t). Consider the following vector of pricing errors (so-called moment

conditions):

cds(t; t+ T,) — cds(t; t + T1)

&fs(t; t+Tnm) —cds(t;t+Tynm)
M- e®

where M denotes the number of CDS contracts with di erent maturities included in f( ;t).

f(;t)= : (12)
Under the null hypothesis that the model is correctly speci ed, we have
E[f( ;9] =0: (13)

To test the above hypothesis, we construct a time series of f( ; t) over the sample period

and consider its time-series mean in the following:
1 T
9Ty =3 Ot (14)
t

In other words, g( ;T) represents the sample mean of the moment conditions. If M =

dim( ) — 1 (i.e., the number of moment conditions is the same as the number of parameters
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to be estimated), then we can pick such that g( ;T) = 0. In general, however, M >
dim( ) — 1 as in our case; that is, there are more moment conditions than parameters. In
this case, we can pick such that linear combinations of the moment conditions are zero.
This is a challenging task, however, especially given that both CDS spreads and equity
volatility are allowed to be observed with measurement errors in this analysis. As such,
we choose to minimize a quadratic function of the pricing errors. Doing so leads to the

so-called GMM estimator:
“=argming( ; TYW(T)g( ;T); (15)

where W (T), a weighting matrix, denotes the asymptotic covariance matrix of g( ;T)
(Hansen, (1982). With mild regularity conditions, “is /T -consistent and asymptotically
normally distributed, under the null hypothesis.

Furthermore, we implement the iterative GMM. That is, we begin with W(T) =1, the
identity matrix, and estimate . Next, we use a heteroscedasticity robust estimator for
the variance-covariance matrix W (T) that allows for autocorrelation in the errors (Newey:

and West, 11987)), and obtain a new ~ We repeat this procedure until it converges.

Given D
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examines the behavior of the two-step GMM estimator using one asset in the estimation.
He nds that the bias of the estimator tends to increase as the degree of overidenti cation
(N°") increases but the empirical sizes of the Jt test tend to be close to the asymptotic
value. [Kocherlakota (1990) extends the analysis of 'Tauchen| (1986)) to multiple assets and
his ndings suggest that the iterated GMM estimator considerably improves the nite
sample behavior of GMM. Using predictive regression models for stock returns, [Ferson
and Foerster| (1994) nd that while sizes of the two-step GMM based Jt statistics are
often too large with nite samples, the iterated GMM approach has superior nite sample
properties. Hansen, Heaton, and Yaron| (1996) consider a consumption-based asset pricing
model where the representative agent’s utility function allows for time non-separability.
They nd that when the number of the overidentifying restrictions is high ( ve), the
asymptotic theory is far from the nite sample property. |Lettau and Ludvigson, (2001)
argue that the one-stage GMM is more appropriate than the two-stage GMM with an
estimated weighting matrix in the application pursued in their study ] where the time
series sample is small relative to the cross-sectional sample size.

In our speci cation analysis, we test a given candidate model rm by rm. Based on
the insights from the aforementioned studies, in order to mitigate the potential small
sample problems in our tests, we need to keep the degree of overidenti cation minimal. As
discussed in Section for a given rm, the number of parameters to be estimated using
the GMM ranges from one for the Merton model to four for the CDG model. As such, we
use four CDS contracts and realized equity volatility (i.e., ve moment conditions) with 36
monthly observations in each GMM test. That is, the degree of overidenti cation ranges
from one in CDG to four in Merton in our tests. As a robustness check, we also test the
Merton model using one CDS contract and realized equity volatility such that the degree
of overidenti cation is one. The number of time series observations relative to the number
of moment conditions is reasonably large, given that the latter is no more than ve in our
tests. Additionally, we implement the iterative GMM. Taken together, the ndings of the
aforementioned studies based on the equity market suggest that small sample problems

are not a major concern in our GMM tests.
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4.3 Implementation

In this subsection we discuss the implementation of the proposed GMM speci cation test.
First, to make the estimation tractable, we separately estimate the interest rate process
from rm-speci ¢ model parameters for the two models with stochastic interest rates (the
LS and CDG models). This is a reasonable strategy, since the interest rate parameters
are common inputs in these models and those rm-speci ¢ parameters do not a ect the
interest rate process.

We use the 3-month LIBOR as a proxy for the short rate (r¢) in the estimation. We
estimate the interest rate volatility using ~, = VAR(ry). Given that the one-factor Vasicek
(1977) model is a crude approximation to the observed term structure dynamics, we opt
to estimate the risk-neutral drift parameters, and , month-by-month as follows:

To
(" " =argmin Y [y — e ()]
T=T1

where the term structure of observed interest swap rates used in the above nonlinear least
square estimation is yf;'“t‘ffT with T = 1;2;3;5;7; and 10 years | matching CDS maturities
included in our sample (see Section . The cross-sectional pricing errors of the Vasicek
model range from 12 to 112 basis points (bps) during the full sample period. The sample
mean of monthly estimates (At; "r-t), Which are obtained by rolling-window estimations,
are 0.3820 and 0.0156, respectively; while " is larger than those reported in previously
studies based on much longer samples (Schaefer and Strebulaev, 2008; |Bao and Pan, |[2013),
the magnitude of "¢ is consistent with their estimates.

Next, we focus on those rm-speci ¢ model parameters. For ease of reference, let
denote the vector of these parameters in the discussion that follows | namely, does not
include ( ; ; ). For a given structural model, we estimate its parameter vector in two
steps.

In step one, xing an initial , we calculate the month-t model-implied CDS spreads,
cds(t; -) = {cds(t; t + Tj)}{_,, and the model-implied equity volatility, e(t), using Egs.
and @]) respectively{ﬂ Given the model-implied cds(t;-) and g (t), we then compute the
6 In connection with Eq. @]) we implicitly include the empirically observed (quasi-market)

leverage ratio as one moment condition by imposing the following constraint during the
estimation: at the end of each month, for every rm in our sample, we adjust the coupon
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month-t vector f( ;t) of pricing errors de ned in Eq. . Repeating this for every month,
we obtain a time series of vector f( ;t) as well as its sample mean, g( ;T) in Eq. ,
over the full sample period.

In step two, we solve the optimization problem speci ed in Eq. , where the weighting
matrix W (T) is estimated iteratively | and in each iteration we use the Newey-West auto-
correlation robust estimator of the covariance matrix with three lags.

In the two-step procedure outlined above, one key component is the choice of the initial

. In the case of the Merton model, = ( ). The initial , = glg, where the quasi
market leverage ratio Ly = F=(F + E), F denotes the total debt (book value), and E the
market equity value. In the case of the Black-Cox model, = ( ;K). The initial  is the
estimate of , obtained using the Merton model. We set the initial K to 1.2 if L < 0:2; 1 if
02<L<0:4;,08if0:4<L<06;06if0:6 <L <0:8;and 0.4 if L > 0:8, where L is the

rm’s mean leverage ratio over the full sample period. Such choice of the initial ( ; K)
is also followed in the estimation of the LS, CDG, and DEJD models.

In the case of the two-factor LS model, we need to estimate ( ; K; ), where the initial
correlation coe cient used is the correlation between equity returns and the interest rate.
Estimates of obtained in the literature, however, are usually zero or slightly negative
(see, e.g., Eom, Helwege, and Huang, [2004; |Schaefer and Strebulaev, 2008; Bao and Pan,
2013). Therefore we restrict to be zero in the estimation of the LS model. As a result,

= ( v;K) in this case.

The other two-factor model, the CDG model, involves ve parameters: ( v; ; < ; ).
Results from an untabulated analysis indicate that coe cients and seem di cult to
be simultaneously identi able and that is not bounded between -1 and +1. As a result,
we impose the restriction that = 0. Doing so also makes it easier to see the incremental
impact of the stationary leverage ratio relative to the LS model. It follows that the vector
of parameters to be estimated using GMM is = ( ; -; ; ). Theinitial values of -; ;
are chosen to be the same as the values used in CDG.

In the case of the DEJD model, the model parameters include ( v; K; ?;pQ; & ).
The latter three parameters, (pQ, 3, c?), however, enter the solution function multi-

plicatively with @ asin < @ and, as a result, are very di cult to identify in our GMM

rate of its debt such that it is valued at par and, as a result, that the market value of the
rm is equal to (market equity + book debt).
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estimator. To overcome this technical di culty in the GMM estimation of the DEJD
model, we let = ( ;K; @), and restrict the domain of (pQ, &, (?) to the following
particular values: pQ € {0:25;0:5;0:75}, Q € {3;5}, and {3 € {3;5}, where the inputs of
(S c?) are motivated by the calibration exercise of Huang and Huang (2002). In our es-
timation, for each rm, we choose the particular set of jump parameters with the smallest

J-statistic as the \best" jump model estimate. The initial < is set to 0.1.

5. Data Description

Data used in our study include single-name credit default swap (CDS) spreads, data on
intraday equity returns (used to estimate realize equity volatility), rm balance sheet
information, and risk-free interest rates. In this section we describe each of these four data

sets in detail, and then present summary statistics on CDS spreads and rm characteristics.

5.1 Credit Default Swap Spreads

We use CDS data from Markit, a comprehensive data source that assembles a network of
industry-leading partners who contribute information across several thousand credits on
a daily basis. Based on the contributed quotes, Markit creates the daily composite quote
for each CDS contract, which must pass the stale data test, at curve test, and outlying
data test. Together with the pricing information, the Markit data set also reports average
recovery rates used by data contributors in pricing each CDS contract. In addition, an
average of Moody’s and S&P ratings is also included.

We begin with collecting all CDS quotes written on US entities (sovereign entities ex-
cluded) and denominated in US dollars. Following previous empirical studies on structural
models (e.g., Eom, Helwege, and Huang, |2004), we exclude nancial and utility sectors
from the sample. In addition, we focus on the senior unsecured CDS contracts and elim-
inate the subordinated class of CDS contracts, because of their small relevance in the
database and unappealing implication in credit risk pricing. Furthermore, we limit our
sample to CDS contracts with modi ed restructuring (MR) clauses, as they are the most

popularly traded in the US market.
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For the purpose of GMM estimation, we restrict the sample to those CDS names with
at least 36 consecutive monthly observed spreads to be included in the sample. Another
Iter used is that CDS data need to match equity price from CRSP, equity volatility from
NYSE Trade and Quote (TAQ) and accounting variables from Compustat. Application of
these Iters results in a nal sample of 93 entities.

The Markit data set has single name CDS spreads available for maturities of 0.5, 1,
2,3,5,7, 10, 15, 20, and 30 years. Due to the liquidity concern and missing values, we
focus on CDS spreads with maturities of 1 through 10 years. For each entity, we create
the monthly CDS spread by selecting the latest composite quote in each month, and,
similarly, the monthly recovery rates linked to CDS spreads. Our nal sample includes 93
single names with monthly CDS spreads for maturities of 1, 2, 3, 5, 7, and 10 years over

the period January 2002{December 2004.
5.2 Equity Volatility from High Frequency Data

By the theory of quadratic variation, it is possible to construct increasingly accurate mea-
sure for the model-free realized volatility or average volatility, during a xed time interval
(say, a day or a month), by summing increasingly ner sampled squared high-frequency
returns (Andersen, Bollerslev, Diebold, and Labys, 2001} |[Barndor -Nielsen and Shephard,
2002; IMeddahi|, [2002). In testing structural models, asset return volatility is often backed
out from (observed) equity return volatility (e.g., [Jones, Mason, and Rosenfeld, |1984;
Eom, Helwege, and Huang, [2004), therefore a more accurate measure of equity volatility
from high-frequency data is critical in correctly estimating the asset return volatility | a
driving force behind the rm default risk.

Let s; = log St denote the day t logarithmic price of the rm equity, and the intraday

returns are de ned as follows:
e = Stia — Sty(i-1)-A; 17)

where rg; refers to the it within-day return on day t and is the sampling frequency

and chosen to be 5-minute. The realized equity volatility (squared) for period t is given as

1=A
B =D (r5)? (18)
i=1



18 Jing-Zhi Huang et al.

which converges to the integrated or average variance during period t. For a jump-di usion
model, the continuous component of equity volatility (squared) can be estimated with the

so-called \bi-power variation"

1=2
— 1=
()’ = Eﬁ; reiallrgil (19)
i=

As shown by |Barndor -Nielsen and Shephard| (2004), such an estimator of realized equity
volatility is robust to the presence of rare and large jumps. The data are provided by
the NYSE TAQ data base, which includes intraday (tick-by-tick) transaction data for
all securities listed on NYSE, AMEX, and NASDAQ. The monthly realized variance is
the sum of daily realized variances, constructed from the squares of log intraday 5-minute
returns. Then, monthly realized volatility is just the square-root of the annualized monthly

realized variance.
5.3 Capital Structure and Asset Payout

Assets and liabilities are key variables in evaluating structural models of credit risk. The
accounting information is obtained from Compustat on a quarterly basis and assigned to
each month with the quarter. We calculate the rm asset as the sum of total liability plus
market equity, where the market equity is obtained from the monthly CRSP data on shares
outstanding and equity prices. Leverage ratio is estimated by the ratio of total liability to
the rm asset. The asset payout ratio is estimated by the weighted average of the interest

expense and dividend payout. Both ratios are reported as annualized percentages.
5.4 Risk-Free Interest Rates

To proxy the risk-free interest rates used as the benchmark in the calculation of CDS
spreads, we use the 3-month LIBOR and the interest rate swaps with maturities of 1, 2,

3, 5, 7, and 10 years. These data are available from the Federal Reserve H.15 Release.
5.5 Summary Statistics

Table[I] provides summary statistics on rm characteristics and CDS spreads across either

rating categories (panel A) or sectors (panel B). As can be seen from panel Al, our sample
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is concentrated in A-rated (25) and BBB rms (45), which account for 75 percent of the
full sample, re ecting the fact that contracts on investment-grade names dominate the
CDS market. In terms of the average over both the time-series and cross-section in our
sample, the 5-year CDS spread is 144 bps with a standard deviation of 3.18 percent, equity
volatility 38.40 percent (annualized), the leverage ratio 48.34 percent, asset payout ratio
2.14 percent, and the quoted recovery rate 40.30 percent. As expected, the CDS spread,
equity volatility, and the leverage ratio all increase as rating deteriorates. On the other
hand, the recovery rate largely decreases as rating deteriorates but has low variations.
Figure (1) plots both the term structure (from 1 year to 10 years) and time evolution
of the average CDS spreads over the full sample period January 2002{December 2004.
Clearly, the average spreads show large variations and have a peak around late 2002.
Figure |2| plots both the 5-year CDS spreads (top panel) and equity volatility (bottom
panel) by three di erent rating groups (AAA{A, BBB, and BB{CCC) over the full sample
period. A casual inspection of the gure indicates that CDS spreads and equity volatilities
appear to move together sometime during market turmoils but are only loosely related
during quiet periods. The 5-year CDS spreads clearly have a peak in late 2002 across all
three rating groups, although the high-yield group has another spike in late 2004. On the
other hand, equity volatility is much higher in 2002 than the later part of the sample
period and, in particular, has two huge spikes in 2002. There is clear evidence that equity
volatility and credit spreads are intimately related (Campbell and Taksler, 2003), and
the linkage appears to be nonlinear in nature (Zhang, Zhou, and Zhu, 2009). In the next
section we examine whether structural credit risk models can capture the dynamics of the

CDS spreads and equity volatility in our sample.

6. Empirical Results

In this section we present the results from our empirical analysis. We rst report the
results from the GMM speci cation test proposed in Section |4} We then discuss the GMM
estimates of the model parameters and the pricing performance of the ve structural

models considered. Next, we provide some diagnostics on various model speci cations
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based on the pricing errors. Lastly, we focus on the model implications for hedge ratios

and default probabilities.

6.1 GMM Speci cation Test

Our GMM speci cation test is based on the model implied pricing relationship for CDS
spread and equity volatility. Table 2 reports the test results, in particular, the number of

rms where each of the ve candidate models is not rejected, for the whole sample as well
as subsamples by either credit ratings (panel A) or sectors (panel B). Note from the table
that at the conservative 10% signi cance level, the number of rms (out of 93) where the
given model is not rejected is 0, 1, 2, 13, and 52 for the Merton, BC, LS, DEJD, and CDG
models, respectively. At the 1% signi cance level, none of the ve models have a rejection
rate of 100% and the number of rms with the model not being rejected increases to 5,
6, 12, 42, and 72 for the Merton, BC, LS, DEJD, and CDG models, respectively. Judged
by these results on the number of rms where each of the ve models is not rejected, the

ranking of these models is as follows
Merton ~ Black-Cox < LS « DEJD < CDG

Notably, the two more recent models ] the DEJD and CDG models ] outperform the other
three models. This nding implies that both jumps and time varying leverage improve
noticeably the model performance[] Although it is known that the Merton model under-
performs the richer models, the new evidence presented here against the model is based
on a consistent econometric test that takes into account the dynamic behavior of both
CDS spread curves and equity volatility.

Granted, GMM omnibus tests may be biased toward over-rejection of the true model
speci cation. As a robustness check, we repeat the GMM test of the Merton model using
only one CDS contract (the 5-year one) and realized equity volatility. The results from
this test with the degree of overidenti cation being one show that the number of rms

with the Merton model not being rejected is still zero at the 10% signi cance level but

7 [Eom, Helwege, and Huang| (2004) nd that the CDG model marginally improves the
tting of bond spreads over the LS model. One possible reason why we nd that the
improvement over LS here is signi cant is the use of CDS spreads in our tests. Another
possible reason is that the risk-neutral leverage parameters are estimated directly here
rather than indirectly through their counterparts under P, as alluded in|Eom et al.| (2004)).
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increases to 20 at the 1% signi cance level (untabulated). These results indicate that when
the degree of overidenti cation decreases from four to one, the GMM test indeed rejects
the Merton model considerably less at the 1% signi cance level. Nonetheless, the number
of rms not rejecting the model (20) is still way below that for either the DEJD model
(42) or the CDG model (72).

As such, our ndings provide new evidence on the relative performance of the ve can-
didate models. Furthermore, given that even the highest-ranking model, the CDG model,
is rejected by 21 out of 93 rms at the 1% signi cance level, the results in Table |2 also

indicate that the ve representative models considered here are still missing something.

6.2 Parameter Estimation

Although the GMM method provides a consistent test of the models, it does not necessar-
ily force the parameter estimates to be plausible in the estimation. Thus, it is important
to examine the model parameters and model implications for other moments or variables
using the estimated models. We focus on estimates of model parameters ( ) in this sub-
section and investigate the latter aspect of the analysis in Sections[6.5] and [6.6

Recall from Section [4.3] that vector does not include those predetermined parameter
inputs in the case of the two-factor models and the DEJD model. Table[3reports parameter
estimates " and their standard errors across either credit ratings or sectors. Panel A
shows the results for the asset volatility parameter , which enters all ve models. This
parameter is signi cant at all conventional statistical levels. The level of the estimates
is reasonable in all models: the mean (median) asset volatility ranges from 0.154 (0.135)
for the Merton model to 0.199 (0.170) for the CDG model. The standard deviation of ~,
ranges from 0.007 for the Merton model to 0.09 for the LS model.

Panel B of Table [3 reports the estimated default barrier scaled by the total debt, an
important parameter in the three models with a at default boundary. The estimated K=F
has a mean (median) of 1.18 (1.06), 1.16 (1.05), and 0.83 (0.75) for the BC, LS, and DEJD
models, respectively. This result is intuitive albeit not surprising. To see that, relative to
the BC model, the LS model needs a higher K in order to \mitigate" the negative impact

of a negative (the correlation between the asset return and the interest rate) on the CDS
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spread. On the other hand, relative to the same benchmark, the DEJD model requires a
lower K given the positive impact of the jump risk on the CDS spread.

We also observe that the median K=F for investment-grade (IG) names is higher than
the median for high-yield (HY) names across all three models. In particular, in the LS
model while the median for 1G names is greater than one, the median for HY names is
below one. Similar results obtain when we plot the estimated K=F the observed leverage
ratio F=V¢. As can be seen from Figure [3| the slope is signi cantly negative, indicating
that a higher K=F is associated with a lower observed leverage (which is usually associated
with a higher credit rating). These results on a negative relationship between the default
boundary and the credit rating/observed leverage are also consistent with the evidence
documented in [Eom, Helwege, and Huang| (2004) based on the LS model with corporate
bond data.

Columns 3{5 in panel C of Table[|report the estimates of the risk-neutral jump intensity
parameter ( ) in the DEJD model. Note that the full-sample mean and median of Q
are 0.181 and 0.126, respectively. Across di erent rating categories, the median “Q Jevels
for HY names are much higher than those for investment-grade names. For instance, the
median is 0.123 for BBB names and 0.209 for BB names. This variation in @ across
di erent rating groups partly explains the negative relation between the estimated default
boundary and the credit rating discussed earlier (panel B of the table).

The remaining columns in panel C of Table [3 show the estimates of the three leverage
parameters in the CDG model, - (columns 6-8), (columns9{11),and (columns 12{14).
Recall that - is the mean-reverting speed of the risk-neutral log leverage ratio log(K¢=Vy).
The full-sample mean and median of ~ are around 15.16 and 15.35, respectively. In the
IG subsample, the median ranges from 15.04 for the single AAA-rated name to 17.72 for
the AA-rated names; in the HY subsample, the median is -0.021 for the single CCC-rated
name, 1.41 for the BB-rated names, and 5.19 for the B-rated names. These results mean

~

that the median “- is much larger than the calibrated value of 0.18 adopted by CDG or
the regression-based estimate obtained in|Frank and Goyal| (2003), regardless of the rating
categories except for the CCC rating group. This nding may be an indication that the
CDG model is missing something; it also illustrates the importance of post-estimation

examination of the parameter estimates.
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Parameter is related to -, the long-run mean of the risk-neutral leverage ratio, given
that - = M + (re— ) — .Ourchoice of estimating a constant implies a time-
varying but deterministic -. The median of ~ ranges from 0.11 for the lone AAA name to
1.57 for the only CCC-rated name. The full sample mean and median are 0.22 and 0.16,
respectively, both of which are closer to the calibration value of 0.60 used in CDG.

Parameter measures the sensitivity of the rm-speci c leverage ratio dynamics to the
risk-free interest rate, similar to the risk factor loading in standard asset pricing models.
The full sample mean and median are 2.83 and 1.88, respectively. Across di erent rating
groups, the median lies in between 1.18 and 3.15 except for the single CCC-rated name
whose is about 37.42. There is substantial variation in _ within each rating group except
for the single AAA- and CCC-rated names. For instance, in the BB-rated group, the 5th-
and 95th-percentiles are about -12.19 and 11.76, respectively. The above results suggest
that rms have very di erent leverage ratio dynamics as the macroeconomic risk changes
over time. Such a heterogeneity of dynamics leverage ratio seems to be the key for the

CDG model to pass the GMM speci cation test with more than half of the sample.

6.3 Pricing Performance Evaluation

As the evaluation of structural models is usually based on comparing their pricing errors on
corporate bonds in the literature, we examine the pricing errors of candidate models (after
the parameters are consistently estimated and model speci cation tests are conducted) in
this subsection.

To be more speci c, given a candidate model and its estimated model parameters, in
each month we calculate the model implied equity volatility and CDS spreads for each
maturity including 2 and 7 years. Note that while 2- and 7-year contracts are too sparse to
be included in estimation, they are still useful to be included in pricing error evaluation.
Then we compute the simple di erence, absolute di erence, and percentage di erence
between the model implied and observed ones, for every name in the sample. Next, we
calculate the mean of the pooled pricing errors.

Table [4] reports the pricing errors on CDS spreads for the full sample as well as by
each rating group and sector. In terms of pricing errors on the spread level (panel A), the

overall average pricing error is negative except for the Merton model. This is to say that
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on average, the Merton model overestimate the CDS spread while the other four models
underestimate the spreadsE] Speci cally, the average pricing error is -0.18% for CDG, -
0.44% for DEJD, -0.71% for LS, and -0.91% for BC. Thus, the CDG and DEJD model
under- t the spread less than do the BC and LS models.

Note that the overall positive pricing error of the Merton model is mainly driven by
the four B-rated names and single CCC-rated name (Delta Air Lines) in the sample. To
see that, recall rst from Table Al that these ve names all have high leverage and high
equity volatility. Delta Air has an equity volatility of 81.9% and a leverage of 93.9%; the
average equity volatility and leverage on the four B-rated names are 83.2% and 72.6%,
respectively. It is known that the Merton-implied short-term spread on such rms can be
very high (Merton, 1974). This result also holds for the ve B and CCC names in our
sample (see panel C of Figure . As a result, the Merton pricing error on these names is
large as reported in panel A of Table 4 Next, note from panel A that the average pricing
error for IG names is negative, regardless of the structural models considered; that is, on
average, all ve candidate models underestimate the CDS spread on IG names, consistent
with the ndings of |Bao| (2009)) using the BC and DEJD models as well as those of |Eom,
Helwege, and Huang| (2004) and Huang and Huang (2012) based on IG bonds.

In terms of absolute pricing performance (panel B), the BC and LS models outperform
the Merton model but underperform the DEJD and CDG models in both the full sample
and each of the seven credit-rating groups (except for the single CCC-rated name where the
BC model slightly outperforms CDG). Furthermore, between the two more recent models,
the DEJD model performs relatively better for the 1G names while the CDG model does
better for the HY names (except for the single CCC-rated name). These results contrast
the ndings of Eom, Helwege, and Huang| (2004) based on corporate bond data that richer
model speci cations do not improve upon the Merton model in terms of pricing errors.

Results on percentage pricing errors, reported in panel C, indicate that on average, the
CDG model overestimates the CDS spread while the other four models underestimate the
spread. Among the IG names, the Merton, BS, LS, and DEJD models all underestimate

the spread substantially in each of the four rating categories, except that the DEJD model

8 |Predescul (2005)) also observes that combining equity price and CDS spreads would make
the Merton model over t the spread.



Speci cation Analysis of Structural Credit Risk Models 25

overestimates the single AAA name’s spread. On the other hand, the CDG model over-
estimates the spread for three 1G-rated subgroups. These results indicate that although
the newer models (DEJD and CDG) do improve upon the older ones (Merton, BC and
LS), the CDG model can raise the spread too much for names in certain rating groups in
terms of the percentage pricing errors.

Panel D reports the results on absolute percentage pricing errors. The ranking of the

ve models is largely the same as before: the DEJD and CDG models outperform the BC
and LS models, both of which outperform the Merton model. Nonetheless, the accuracy of
all ve models is still a problem: the average absolute percentage pricing error ranges from
45.6% for the DEJD model to 114.3% for the Merton model. This nding echos a similar
one in the corporate bond market documented in |[Eom, Helwege, and Huang| (2004]).

Table 5] presents the results on tting errors of equity volatility. Broadly speaking, they
display similar patterns to those on the CDS spreads (Table . For instance, consider
panel A. Note that for each model the overall sign of tting errors on equity volatility is
consistent with those on CDS spreads, though the magnitude of volatility tting errors
is generally larger. To some extent, this result is not surprising given that credit spreads
increase with the asset volatility in the candidate models. Note also that the Merton

tting error is positive overall mainly because of over tting in the four B-rated and one
CCC-rated bonds. In fact, the model under- ts equity volatility of AA and A names
substantially. The other four models also under- t equity volatility of IG names, except
for the single AAA-rated name in the case of the BC, LS and DEJD models and for the
AA-rated names in the case of the BC model.

In terms of absolute tting performance (panel B), on average, the DEJD and CDG
models have the lowest errors (11.61% and 11.87%, respectively), while the Merton model
has the highest one (26.11%). The BC model slightly underperforms CDG but outperforms
LS substantially. Between the two more recent models, on average, the DEJD model
underperforms CDG in IG names but outperforms CDG in HY names.

In terms of percentage tting errors on equity volatility (panel C), the overall sign is
consistent with those on CDS spreads for the BC, DEJD and CDG models. This is not
the case, however, for the Merton and LS models, which both have an overall positive

volatility tting error. Additionally, note that the magnitude of overall percentage tting
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errors on equity volatility is much lower than its counterpart on spreads, because the level
of equity volatility is typically higher than the CDS spread.

The ranking of the ve models based on the overall absolute percentage tting error on
equity volatility (panel D) is the same as that based on the overall absolute tting error
on equity volatility (panel B) except that the BC and CDG models switch their places. In
addition, for each of the seven di erent rating groups, the DEJD model outperforms the
CDG model except for the single AAA-rated name.

To summarize, the results of this section provide evidence that the two more recent
models (the DEJD and CDG models) outperform the three older ones (the Merton, BC,
and LS models) in tting CDS spreads as well as equity volatility. Nonetheless, we nd
that on average, the ve structural models all underestimate CDS spreads as well as equity
volatility for 1G names. In addition, the accuracy of all ve models in tting either the

CDS spread or equity volatility is low.

6.4 Further Diagnostics on Model Speci cations

In this subsection, we try to gain further insights on model speci cation errors, by ex-
amining the model-implied term structure and time series of CDS spreads, along with
the model-implied equity volatility. We also discuss some implications of this analysis for
improving the standard structural models.

Figure [4] plots the sample average of the CDS term structure from 1 year to 10 years
from the observed data (in solid blue) as well as each of the ve candidate models, for three
di erent credit-rating groups, AAA-A (top panel), BBB (middle) and BB-CCC (bottom).
A few observations are worth mentioning here: (1) all ve models under t the average
term structure except for the Merton model that over ts the short end for the BBB and
BB-CCC groups; (2) the best- tting model, CDG, ts the BBB average term structure
almost perfectly and under ts slightly for the AAA-A group; (3) the DEJD model is the
second best; (4) the BC model largely captures the shape of the average term structure but
under ts its level considerably; (5) the LS model slightly underperforms the BC model in
the short maturity for IG names but outperforms the model for HY names; (6) the Merton
model under ts the AAA-A curve substantially, especially in the long end but under ts

the long end of the BBB and BB-CCC curves less than the BC and LS models do.
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Overall, both the stationary leverage and the jump-di usion models match the shape of
the average term structure of CDS spreads well, especially for IG names. The two models,
however, still under t the level of the curve, but the stationary leverage model implied
curve is much closer to the observed one than the one implied by the jump-di usion model.

Figure [5] plots the observed 5-year CDS spread against the ve model implied ones.
For the HY names (the BB-CCC group), all models seem to capture the time-variations
of the 5-year CDS spread reasonably well, although the DEJD and CDG models seem to
be the best two. Furthermore, while the DEJD model outperforms the CDG mode in the

rst third of the sample period, the latter outperforms the former in the last third of the
sample period. For the I1G names (the AAA-A and BBB groups), most models completely
miss the dynamics of the CDS spread, especially for the rst third of the sample, when the
risk-free rate remains as low as 1%. Interestingly, even the best- tting CDG model that
can get the average level right is not able to describe the evolution of the CDS spread. This

nding suggests that a time-varying factor in addition to the interest rate and leverage
ratio ] like stochastic asset volatility | may be needed in order for a structural model to
fully capture the temporal changes in CDS spreads for IG names.

Figure [6] reports the average model-implied and tted equity volatilities over the full
sample period, for three di erent credit-rating groups, AAA-A (top panel), BBB (middle)
and BB-CCC (bottom). Note that for both IG groups, all ve models miss completely
the volatility spikes during the early sample period. Moreover, every model generates a
nearly constant equity volatility while the observed equity volatility varies substantially
over time. For the HY group, the model performance is relatively better. In particular, the
Merton model captures the volatility spikes to some degree and the LS and DEJD models
reasonably t the second half of the volatility time series. However, these results are mainly
driven by the unrealistically high model-implied volatility for the single CCC-rated name.
Overall, Figure [f] provides evidence suggesting that without time varying asset volatility,
the structural models have di culty replicating the observed equity volatility dynamics,
especially for IG names.

Figure [7| plots the initial spot log leverage ratio log(K{=V¢) and the long-run mean of
risk-neutral log leverage ratio implied from the CDG model, for three di erent credit-rating

groups, AAA-A (top panel), BBB (middle) and BB-CCC (bottom). It is clear from the
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gure that these two leverages are fairly close to each other for the HY group (the CCC-
BB names). On the other hand, for the BBB names the observed leverage is signi cantly
lower than its risk-neutral counterpart, and the di erence between the risk-neutral and
observed leverages is even more dramatic for the AAA-A names. This nding mirrors the
stylized fact that highly pro table rms may opt to borrow little or no debt (Strebulaev.
and Yang|, [2013; |Chen and Zhao, 2006)). Such a puzzle may be worth further investigation.
In summary, dynamic leverage ratios and, to a lesser degree, jumps seem to be crucial
for a structural model to better match the CDS spread and equity volatility than those
models without such two features. However, something else is still missing in the candidate
models as they all fail to adequately capture the dynamic behavior of CDS spreads and
equity volatility, especially for the 1G names. Our ndings suggest that incorporating a

stochastic asset volatility may improve the performance of the existing structural models.
6.5 Model-Implied Equity Sensitivity of CDS Spreads

The implications of the estimated structural models go beyond CDS spreads and equity
volatilities, the variables included as moment conditions and examined in Sections[6.3]and
[6.4 In this subsection, we focus on one rm speci c variable not included in the moment

conditions, the sensitivity of CDS spreads to equity return discussed in Section [3.3]

6.5.1 Regression Tests of Model-implied Sensitivities

We rst test the accuracy of model-implied sensitivities in a linear regression setting.

Consider the following regression model:
&i/s(t;t+5)i = it 1 r11=0ty + o fzd;si;trxﬁt+uit; (20)

where (;(dvs(t;t + 5); denotes the monthly change in the observed 5-year CDS spread for

rm i; rey’ the month-t ten-year zero yield extracted from swap rates, included to control
for changes in the \risk-free" term structure; rx}ft rm-i’s monthly equity return minus
the one-month LIBOR; and ‘,’Edfi;t is the model-implied sensitivity of the CDS spread to

equity return for rm i as speci ed in Eq. E] and is calculated using the parameter
° In the implementation of Eq. (10), @cds(t; t + 5);=@V;. is calculated using Eq. (8), and

@Ei.c=@Vi.¢ is set to one minus the delta of a 5-year par bond (see footnote @ an approx-
imation except for the Merton model. In an untabulated analysis based on the BC model,
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vector _ estimated with the full sample (see Section | for example, = ("y) for the
Merton model (Section . If the model accurately describes the equity sensitivity of
CDS spreads, the slope coe cient ».; should be equal to one. On the other hand, if the
model consistently underpredicts the sensitivity, then 5.; is expected to be signi cantly
greater than one.

As such, we can test the null hypothesis (H1) that ,.; =1 ona rm-by- rm basis and
report the number of rms for which H1 is not rejected in our sampIeF_U] In the analysis

that follows, we conduct the test based on a modi ed Eq. with a smoothed &5 :

—cds

cds(t;t+5)i = i+ 1i Moo + 2 o MXeg + Uig; (21)

where 7°Ed;si;t denotes the month-t average of model-implied sensitivities across rms in the
same rating or industry category as rm i. This is because using a smoothed model-implied
hedge ratio can help reduce the noise in the rm-by- rm estimates of model parameters
(see, e.g., Schaefer and Strebulaev, [2008).

Table@ reports the results from regression in Eq. where 7°Edzsi;t used is either by
ratings (panel A) or by industries (panel B). Consider panel A rst. Note that o, the
average of the estimates of 5.; over the whole sample, is 0.74 and 0.76 for the BC and

LS models, respectively, but ».; is around one for the other three models. An inspection

of the means of 5.; in each rating category nds that the means are below one regardless
of the rating categories for both the BC and LS models. This result indicates that these
two models consistently overpredict the equity sensitivity of CDS spreads. On the other
hand, for the Merton and DEJD models, the average Az;i is below or very close to one for

IG names but is greater than one for HY names ] and, in fact, the pair of the coe cients

we nd that including the expected bankruptcy cost in @E;..=@V;.¢ has little impact on
the model’s performance in tting both CDS spreads and equity volatility as well as in
hedging CDS.

10 This regression test is in the spirit of [Schaefer and Strebulaev| (2008), who examine
the Merton-implied sensitivity of corporate bond returns to equity. The authors focus on
the average of regression coe cients (counterparts of ,.; estimates here) across bonds
in their sample and test whether the mean slope coe cient is close to one. Notably,
they nd an imprecise estimate of the mean ,.; in their AAA rating category, which
consists of 23 bonds. Given that there are only 93 observations of the estimated o.; in our
entire sample, there are not enough rms available in certain rating/sector categories for
a reliable inference based on the mean of the 93 estimates. This mean estimate is reported
in Table 6]
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for B and CCC names are (2.90, 3.90) and (2.52, 3.49) for the Merton and DEJD models,
respectively. The variation in the average ».; across di erent rating categories is much
less for the CDG model, with the average ».; ranging from 0.73 for AA names to 1.25 for
AAA.- or B-rated names.

For how many rms out of 93 the null hypothesis H1 is not rejected (for a given model),
based on the t-statistics (using the Newey-West standard error estimator)? As indicated
in panel A, the answer is 72 (Merton), 12 (BC), 18 (LS), 69 (DEJD), and 76 (CDG), at the
5% signi cance level. Recall from Table 2] that the number of rms where the model is not
rejected by the GMM-based speci cation test at the 5% signi cance level is 1 (Merton), 1
(BC), 6 (LS), 20 (DEJD), and 63 (CDG). The implication is that all ve models capture
the sensitivity of CDS spreads to equity much better than they do the CDS spread level
and equity volatility. This is true especially for the Merton model.

Regression R2?, shown in the last row of panel A, is 30.4% for Merton, 26.3% for BC,
28.6% for LS, 30.2% for DEJD, and 18.7% for CDG. Note that the R? generated by
the CDG model is low, and even lower than its counterpart from the otherwise same
regression excluding 7CEd;Si;t (untabulated). Furthermore, the R? under CDG is the lowest
among the ve models. How to reconcile this result with the evidence that the number
of rms where H1 is not rejected is the highest under CDG? One explanation is that
the t-test conducted at the rm level may fail to reject the null hypothesis even if the
point estimate of the slope coe cient substantially deviates from unity, due to the large
standard error estimated using the Newey-West adjustment. Therefore, although among
the ve candidate models the CDG model has the largest number of non-rejected rms,
the model does not necessarily make the most accurate prediction of hedge ratios.

The results reported in panel B of Table [ are largely similar to those in panel A. For
example, the means of estimated ».; in every sector are 0.70 for the BC model and below
0.76 for LS. On the other hand, the means are much closer to one for the other three models.
Furthermore, the Merton-based mean estimate is the largest among the ve model-based
mean estimates for three sectors (out of seven), including 1.33 for \communication," 0.92
for \materials,” and 1.43 for \technology,” and the second largest for the remaining four

sectors. In terms of the regression R2, it is 28.1% for Merton, 11.9% for BC, 13.2% for LS,
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30.0% for DEJD, and 18.6% for CDG. Note that although the R? under CDG is not the
lowest here, it is still much lower than the R? value under either Merton or DEJD.

To summarize, while the results of the test of Hypothesis H1 favor the Merton, DEJD,
and CDG models (in ascending order), the rst two rank notably higher than CDG based
on the regression R2. As a low R? value suggests that the underlying model is unable to
e ectively replicate the variation in CDS contract values, the actual hedging performance
of the same model may also be a ected negatively. As such, the Merton and DEJD models
may provide better hedging performance than does the CDG model. Furthermore, given
that the Merton implied sensitivity is more reasonable than the DEJD implied one (e.g.,
for B and CCC names), the Merton model may provide better hedging performance than
the DEJD model. In the subsection that follows we investigate which of the ve candidate

models delivers the most robust hedging performance.

6.5.2 Evidence on Hedging E ectiveness

Suppose that in month t, an investor hedges a single-name CDS with the underlying equity
and makes no additional trades until the end of t+ 1[TT] At t+ 1, the position is closed
out and the hedging error over the one-month period is computed as

— cds cds E .
t =V —hgER g

where the hedge ratio hCEd;St is as de ned in Eq. , and we make use of the fact that a
CDS contract is worth close to zero when it is rst initiated (V,*9 = 0).

Assume that the investor’s objective is to minimize the monthly volatility of the hedged
single-name CDS. Following [Bertsimas, Kogan, and Lo| (2000), we use root-mean-squared
hedging error (RMSE) as the summary statistic for hedging errors over our sample period.
The RMSE is equal to the standard deviation when the mean hedging error is zero. For

comparison, we also compute the RMSE of the short CDS position when the CDS contract

1 In an untabulated analysis, we also examined the performance of hedging CDS portfolio
positions, with the portfolios formed based on the rating/sector category. These results
are not reported as the relative performance among structural models does not change; as
expected, the absolute hedging e ectiveness increases because the hedging loss from one
single name in the portfolio may be o set by the hedging gain from another.
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is not hedged (h&3 = 0), denoted RM SE¥. One measure of hedging e ectiveness of model

M calculates the reduction in the RMSE as a result of hedging as the following:

~ RMSEM
RMSEY

Heg =1
Note that if hedge ratios implied from a particular model substantially increase volatility
relative to the unhedged position, then Hgg is negative.

Panel A of Table [7] presents the results on the hedging performance of rm-speci ¢
hedge ratios (i.e., hedge ratios not smoothed over a given rating group or a given sector)
under the ve structural models. Surprisingly, among these models the Merton Hgg is
the highest (7.0%), indicating that the Merton-implied hedge ratio achieves the largest
reduction in the RMSE. The CDG model also has a signi cantly positive overall Hgg
(3.5%). In contrast, the overall Hgg is highly negative for both the BC and LS models,
implying that the hedged position ] using hedge ratios derived from the two models | is
much more volatile than the unhedged position. The overall negative Hgg for the DEJD
model has a great deal to do with the BB-rated names.

Consider next the hedging performance of the Merton and CDG models by credit ratings
or sectors. Note that the Merton Hgg is signi cantly positive for BB and B names only
and that the CDG Hgg is signi cantly positive for BB names only. On the other hand,
out of the seven di erent sectors, the Merton Hgg is signi cantly positive for six of them
and the CDG Hgg for two. These results together indicate that the Merton hedge ratio is
more e ective by sectors than by credit ratings.

Why is the overall Hgg so negative for the BC and LS models? One possible reason is
that the use of unsmoothed hedge ratios leads to dramatic increases in volatility. Indeed,
we observe from Table [f] that for those rating or sector groups with a larger number of

rms, the (rating- or sector-speci c) average hedge ratios tend to be more aligned with
their empirical counterparts. This result suggests that smoothing within a credit rating
or industry group could lower the impact of uncertainty in the rm-by- rm estimation, as
advocated by |Schaefer and Strebulaev| (2008). As such, using smoothed hedge ratios (i.e.,
either rating- or sector-speci ¢ (average) hedge ratios) should help mitigate this so-called

\hedging crash risk."
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Panel B of [7] reports the results on hedging performance of rating-speci c¢ hedge ratios.
A comparison with panel A of the table indicates that the overall Hgg in panel B is
much less negative for the BC, LS, and DEJD models and, in fact, becomes statistically
insigni cant for the latter two modeIsE] Although CDG'’s overall Hgg also increases from
3.5% to 5.8%, it is not signi cantly di erent from zero. On the other hand, the Merton
overall Hgg increases from 7.0% to 9.9% and remains highly signi cant.

The hedging performance in individual rating groups also improves. For instance, the
Merton Hgg is now signi cantly positive for ve out of seven groups (only two out of seven
in panel A). For the BC model, its Hgg for the BBB group, for example, increases from
-90.3 (highly signi cant) in panel A to -1.82 (no longer signi cant) in panel B. For the LS
model, its Hgg for the BBB group also increases from a highly signi cant -113.3 in panel
A to an insigni cant -2.06 in panel B.

Results on hedging performance of sector-speci ¢ average hedge ratios, reported in
panel C of Table[7, provide similar evidence as those in panel B do. Consider the overall
Hgg rst. Note that again, Hgg is much less negative for the BC, LS, and DEJD models
than its counterparts in panel A, although it is still signi cant for the BC and DEJD
modeIsE] The CDG Hgg is more positive and still signi cantly di erent from zero. The
Merton Hgg also increases slightly and remains highly signi cant. Overall, judging from
the whole sample, averaging hedge ratios by ratings is more e ective than averaging by
industry in improving the hedging performance.

Next, consider Hgg for individual sectors. For example, the LS Hgg for \industrial™
increases from -103.6 in panel A to -7.48 (albeit still signi cant) in panel B. The CDG
Hgg is now signi cantly positive for ve sectors, as opposed to two sectors in panel A.

In summary, the results based on both the full sample and rating- or sector-speci c
subsamples in Table [7] provide strong evidence that using smoothed hedge ratios helps
Whyis the BC overall Hgg still large and negative with smoothed hedge ratios? The
reason is that the BC model-implied hedge ratios are striking for certain rms in the
sample. In an untabulated analysis we nd that these rms have an estimated default
boundary K=F ranging from 1.26 to 1.54. When the asset value is close to this arti cial
boundary, the equity value becomes insensitive to the asset value. A low @E=@A in ates
the model-implied equity sensitivity of the CDS spread.

13 The overall negative Hgg for the DEJD model is mainly caused by a BB-rated tech-

nology rm. When this rm is excluded from the sample, the hedging performance of the
DEJD model is generally comparable to that of the CDG model (untabulated).
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improve the hedging performance. Furthermore, based on the hedging performance, the
top three ranked models are the Merton, CDG and DEJD models.

We should note that while the analysis of hedging e ectiveness presented here corre-
sponds to an out-of-sample test of hedge ratios, the estimates of model parameters make
use of the full sample. In an untabulated analysis, we examine the hedging performance
for two- and seven-year CDS contracts (which are not included in the GMM estimation)
and nd that the results are consistent with those using the ve-year CDS. In particular,
the ranking of the ve models based on the their hedging performance remains the same.

That is, our ndings are robust to the aforementioned look-ahead bias.

6.6 Model-Implied Default Probabilities

The discussion so far has focused on the implications of structural models for variables
under the risk-neutral measure. In this subsection, we examine model-implied P-measure
default probabilities. For comparison, we also include model-implied default probabilities
under the (risk-neutral) Q-measure.

As an important determinant of CDS spreads, risk-neutral default probabilities are
straightforward to calculate using an estimated model. In order to calculate real default
probabilities, we need to specify the dynamics of the underlying variables under the P-
measure and then estimate those P-measure parameters. The GMM-based estimation of
such parameters, however, requires that P-measure moment conditions be speci ed. We do
not pursue this approach in this analysis. Instead, we calibrate the P-measure parameters
in the analysis that follows when it is necessary.

As a result, for illustration we focus on the Black and Cox (1976) model | the simplest
one among the three candidate models with a at barrier ] in the analysis that follows.
Given the speci cation of the BC model under @Q, its speci cation under P involves only
one extra parameter, the asset risk premium =  —r, where  is the expected asset
growth rate. We calibrate  using the formula, , —r =  x SR, where SR, denotes
the asset Sharpe ratio (equal to the equity Sharpe ratio under the model). To this end,
we set SR, to 0.23, the equity Sharpe ratio of a median rm according to |Chen, Collin-
Dufresne, and Goldstein| (2008), and then use rm-speci c asset volatilities estimated

earlier in Section [6.2] to calibrate rm-speci c asset risk premiums.
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Figure [g] plots the time series and term structure of the BC model-implied default
probabilities under either the Q measure (panel A) or the P measure (panel B) over the
full sample period. A comparison of panel A and Figure [1] indicates that the BC model
fails to capture the surface of CDS spreads, given that the model assumes a constant
recovery rate. As expected, the default probabilities under Q are markedly higher than
their counterparts under P. Nonetheless, both panels show a spike in late 2002, consistent
with Figure [T

We can also compare the average model-implied real default probability with the av-
erage (historical) default rate for a given rating group. For the latter, we use the average
issuer-weighted cumulative default rates by rating categories over 1920{2004 calculated
by Moody’s. Figure @] plots the term structures of average default rates (solid line), the
BC model-implied default probabilities under the Q measure (blue dashed line) as well
as the P measure (red dotted line), for three di erent rating groups, single A (panel A),
BBB (panel B), and BB (panel C). The AAA-A group is not considered here because,

rst, we do not have Moody’s average default rates for the AAA-A group and secondly,
the AAA-A group in our sample is dominated by the single A rms. Panel C includes only
the BB names instead of the CCC-BB group for the similar reason.

We make two observations from Figure[9 First, the BC model ts the Moody’s average
default rates well for A-rated names. The implication of this result is that the evidence
based on single A rms in our sample is consistent with the notion of the credit spread
puzzle: the model matches the average default rates but it underpredicts the CDS spreads.
Second, the model under ts the average default rates for both BBB and BB names, espe-
cially at long horizons. To some extent, this result is not surprising given that on average,
the model noticeably underestimates the CDS spreads for BBB and BB names over the
full sample. For the model to match the historical averages the period 1920{2004, we need
higher asset volatility, default boundary, or both (than the estimates reported in Table .
Such parameter values also allow the model to t the observed CDS spreads for BBB and

BB names better, largely consistent with the credit spread puzzle.
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7. Conclusions

Empirical studies of structural credit risk models are usually carried out using calibra-
tion, rolling window estimation, or regression analysis. This paper proposes a GMM-based
speci cation test of these models. This alternative method allows us to directly estimate
structural models, as well as test whether all the restrictions of the model are satis ed,
among other things.

For illustration, we apply the proposed speci cation test to ve representative structural
models using data on the term structure of CDS spreads and realized equity volatility
(estimated with high frequency intraday data). We conduct the test using a sample of
industrial rms over a post dot-com bubble and pre- nancial crisis period that nonetheless
includes some relatively high credit risk episodes. The test results show that the Merton
(1974) model and the two di usion-based constant-barrier models are all strongly rejected
by the proposed speci cation test. However, the results also indicate that incorporating
jumps or stationary leverage into a barrier model improves the overall t of CDS spreads
and equity volatility. Nonetheless, all ve models have di culty capturing the dynamic
behavior of both equity volatility and CDS spread curves, especially for investment-grade
names. On the other hand, our results demonstrate that these models have a much better
ability to explain the average sensitivity of CDS spreads to equity return than their ability
to explain the average CDS spread and equity volatility. Surprisingly, we also nd that
the Merton (1974) model provides the best hedging performance among all ve models.

Overall, the main ndings of this study, together with those of |Bao and Pan| (2013)) on
excess corporate bond return volatility, suggest a need for new structural models that can
explain not only the credit spread puzzle but also the second moment variables. Another
line of inquiry worth pursuing is to conduct a more rigorous and comprehensive analysis

of nite sample properties of the GMM test proposed in this study.
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Table 1: Summary Statistics on CDS Spreads and the Underlying
Names

This table reports summary statistics on the 93 rms, by ratings (Panel A) and sectors (Panel
B), that underlie the credit default swap (CDS) contracts in the entire sample. Rating is the
average of Moody’s and Standard & Poor’s ratings. Equity volatility is estimated using 5-minute
intraday returns. Leverage ratio is the total liability divided by the total asset which is equal to
total liability plus market equity. Asset payout ratio is the weighted average of dividend payout
and interest expense over the total asset. Recovery rate is the quoted recovery rate accompanied
with the CDS premium from the dealer-market. CDS spreads have 1-, 2-, 3-, 5-, 7-, and 10-year
maturities over the period from January 2002 to December 2004.

Panel Al: Firm Characteristics by Credit Ratings

Credit rating Sample rms Equity Leverage Asset  Recovery
number percentage volatility (%) ratio (%) payout (%) rate (%)

AAA 1 1.08 36.36 63.71 2.22 40.88

AA 6 6.45 31.50 20.92 1.53 40.92

A 25 26.88 32,51 38.15 2.02 40.57

BBB 45 48.39 35.54 51.84 2.26 40.73

BB 11 11.83 47.19 57.76 2.15 39.51

B 4 4.30 83.23 72.61 2.28 38.23

CCC 1 1.08 81.94 93.93 2.89 26.57

Overall 93 100.00 38.40 48.34 2.14 40.30

Panel A2: Average CDS Spreads (%) by CDS Maturities and Ratings
Maturity of CDS

1-year 2-year 3-year 5-year 7-year 10-year

AAA 0.23 0.28 0.32 0.43 0.45 0.49
AA 0.12 0.13 0.15 0.20 0.23 0.28

A 0.25 0.29 0.32 0.39 0.43 0.49
BBB 0.74 0.79 0.86 0.94 0.98 1.05
BB 2.62 2.74 2.84 2.90 2.92 2.92

B 7.52 7.20 7.51 7.25 7.01 6.79

CCC 25.26 22.99 20.91 18.81 18.03 17.31
Overall 1.34 1.36 1.40 1.44 1.45 1.49

Panel A3: Std. Dev. of CDS Spreads (%) by CDS Maturities and Ratings

AAA 0.17 0.19 0.21 0.25 0.23 0.24
AA 0.07 0.07 0.07 0.09 0.09 0.10
A 0.23 0.27 0.24 0.25 0.24 0.26
BBB 0.96 0.96 0.96 0.91 0.89 0.84
BB 2.72 2.75 2.59 2.35 2.28 2.14
B 8.67 6.19 7.61 6.12 5.90 5.25
CCC 24.96 19.40 16.48 13.65 12.68 11.81

Overall 4.43 3.78 3.62 3.18 3.04 2.85
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Table [1] (continued)

Panel B1: Firm Characteristics by Sectors

Sector Sample rms Equity Leverage Asset Recovery
number percentage volatility (%) ratio (%) payout (%) rate (%)
Communications 6 6.45 48.72 42.93 1.99 40.14
Consumer Cyclical 32 34.41 38.95 48.56 2.01 40.45
Consumer Staple 14 15.05 33.77 41.68 2.24 40.87
Energy 8 8.60 39.93 53.89 247 40.05
Industrial 18 19.35 40.24 53.90 2.01 39.90
Materials 11 11.83 32.85 49.34 2.73 41.35
Technology 4 4.30 45.22 40.20 1.29 38.95
Overall 93 100.00 38.68 48.39 2.14 40.39
Panel B2: Average CDS Spreads (%) by CDS Maturities and Sectors
Maturity of CDS
1-year 2-year 3-year 5-year 7-year 10-year
Communications 2.04 1.99 2.09 2.23 2.16 2.10
Consumer Cyclical 1.57 1.58 1.58 1.61 1.62 1.66
Consumer Staple 0.74 0.81 0.86 0.92 0.94 0.98
Energy 1.58 1.38 1.53 1.43 1.47 1.48
Industrial 1.29 1.38 141 1.46 1.48 1.53
Materials 0.92 0.96 1.03 1.10 1.14 1.20
Technology 1.38 1.43 1.48 1.48 1.51 1.52
Overall 1.34 1.36 1.40 1.44 1.45 1.49
Panel B3: Std. Dev. of CDS Spreads (%) by CDS Maturities and Sectors
Communications 4.82 4.13 4.58 4.74 4.33 3.80
Consumer Cyclical 6.19 5.25 4.65 4.06 3.85 3.65
Consumer Staple 2.08 221 2.18 2.10 2.02 1.92
Energy 5.60 3.66 4.80 3.32 3.45 3.14
Industrial 2.36 2.54 2.34 2.16 2.09 2.07
Materials 1.46 1.42 1.43 1.39 1.38 1.34
Technology 2.20 2.17 2.12 1.82 1.74 1.59
Overall 4.43 3.78 3.62 3.18 3.04 2.85
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Table |3|(continued)
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Panel B: Estimate of the Default Boundary

# of Firms Structural Credit Risk Models Considered
Total 93 Black-Cox Longsta -Schwartz DEJD
Mean 1.176 1.161 0.830
Std. Dev. (0.145) (0.274) (0.183)
Percentiles p5 p50 p95 p5 p50 p95 p5 p50 p95
0.640 1.055 1.923 0.536 1.049 2.018 0.419 0.752 1.734
Asymptotic SEs (0.006) (0.134) (0.217) (0.020) (0.173) (0.859) (0.020) (0.163) (0.316)
AAA 1 0.971 0.971 0.971 1.086 1.086 1.086 0.723 0.723 0.723
AA 6 0.844 0.905 2.296 0.751 1.034 2.442 0.807 1.553 1.773
A 25 0.887 1.362 2.425 0.751 1.180 2.449 0.304 0.886 1.904
BBB 44 0.638 1.072 1.685 0.597 1.057 1.835 0.443 0.696 1.174
BB 12 0.655 0.867 1.782 0.430 0.921 1.783 0.422 0.672 1.759
B 4 0.550 0.793 0.983 0.333 0.718 1.004 0.380 0.538 0.700
CCC 1 0.959 0.959 0.959 1.011 1.011 1.011 0.706 0.706 0.706
Communications 6 0.612 1.295 1.675 0.449 1.208 1.846 0.087 0.614 1.137
Consumer Cyclic 32 0.648 1.094 2.199 0.618 1.174 2.211 0.501 0.749 1.570
Consumer Stable 14 0.606 1.007 2.740 0.417 0.894 2.813 0.474 0.822 1.980
Energy 8 0.638 0.938 1.951 0.417 0.925 2.094 0.350 0.656 1.862
Industrial 18 0.660 1.019 1.840 0.635 1.033 1.813 0.405 0.710 0.953
Materials 11 0.865 1.062 1.513 0.756 1.150 1.657 0.427 0.807 1.025
Technology 4 0.655 0.958 1.630 0.548 0.928 1.636 0.635 0.775 1.767
Panel C: Estimates of Other Parameters in the DEJD and CDG Models
@ @) 3 (O] () 6) (O] ®) [©) (10) 1 (12) (13) (14
# of Firms Structural Credit Risk Models Considered
Total 93 DEJD Collin-Dufresne and Goldstein
Parameter AQ K- v @
Mean 0.181 15.155 0.222 2.829
Std. Dev. {0.078} {3.258} {0.274} {2.070}
Percentiles 5 p50 p95 5 p50 p95 5 p50 p95 5 p50 p95
0.042 0.126 0.499 0.446  15.347 35466  0.069 0.163 1.180 -0.103 1.878 6.242
Asymptotic SEs (0.009) (0.029) (0.132) (0.007) (0.062) (0.439) (0.003) (0.008) (0.137) (0.048) (0.181) (1.867)
AAA 1 0.119 0.119 0.119 15.042 15.042 15.042 0.106 0.106 0.106 1.184 1.184 1.184
AA 6 0.057 0.092 0.227 1608 17.715 22.097 0.185 0.293 1.988 0.359 3.142  36.208
A 25 0.034 0.113 0.277 10.189 16.826 35.489  0.099 0.173 0.555 1.352 2.279  10.199
BBB 44 0.054 0.123 0.465 8.717  15.357 35489 0.068 0.142 0.261 -0.095 1.736 2.952
BB 12 0.008 0.209 0.483 0.047 1.414 20.708 -4.117 0.209 1.158 -12.185 1.367 11.763
B 4 0.420 0.493 0.981 0.476 5.191 8.877 0.069 0.261 1.017 -0.797 1.581 6.336
CCC 1 0.580 0.580 0.580 -0.021  -0.021 -0.021 1.566 1.566 1566 37.416 37.416 37.416
Communications 6 0.044 0.166 0.420 1905 12.767 15.833 0.191 0.255 1.389 1.428 3.091 29.644
Consumer Cyclic 32 0.060 0.151 0.559 0.126  15.434 33.934 0.069 0.164 1.946 -0.099 1.876  32.980
Consumer Stable 14 0.043 0.114 0.468 2.982 17.280 35.489 0.073 0.148 0.295 0.148 1.862 3.507
Energy 8 0.040 0.118 0.469 8.877 14580 19.271  0.090 0.136 0.277 -0.797 1.340 3.508
Industrial 18 0.043 0.107 0.713 0.647 15.437 35489 0.069 0.146 0.888 -7.485 1.743 2.796
Materials 11 0.057 0.096 0.441 0.062 17.096 24548 -4.351 0.159 0.277 -0.025 1.908 5671
Technology 4 0.001 0.088 0.114 0.406 8.633  16.944  0.195 0.418 1.209 -9.763 2.566  12.435
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Table 4: CDS Pricing Errors in Structural Credit Risk Models

Jing-Zhi Huang et al.

This table reports the pricing errors of CDS spreads under each of ve structural models. Pric-
ing errors are calculated as the average, absolute, average percentage, and absolute percentage
di erences between the model implied and observed spreads, across six maturities, 1, 2, 3, 5, 7,
and 10 years, and monthly observations from January 2002 to December 2004. The ve model
speci cations include Merton (1974), Black and Cox (1976), Longsta and Schwartz (1995),
Collin-Dufresne and Goldstein (2001), and the double exponential jump di usion (DEJD)
model used in Huang and Huang (2012).

Firms CDS Pricing Errors in Five Di erent Models

by ratings/sectors number Merton BC LS DEJD CDG Merton BC LS DEJD CDG

Panel A: Average Pricing Error (%) Panel B: Absolute Pricing Error (%)
Overall 93 037 -091 -0.71 -0.44 -0.18 154 099 0.98 0.75 0.78
AAA 1 -0.14 -0.30 -0.28 0.00 -0.11 0.24 0.30 0.28 0.19 0.20
AA 6 -0.19 -0.12 -0.16 -0.06 -0.03 0.19 0.15 0.16 0.09 0.11
A 25 -0.31  -0.25 -0.25 -0.08 -0.03 034 028 0.29 0.17 0.18
BBB 44 011 -0.63 -0.61 -0.32 0.00 123 066 0.68 0.45 0.59
BB 12 0.16 -1.65 -1.60 -0.10 -0.07 2.46 1.82 1.95 1.47 141
B 4 6.39 -434 -4.24 -3.62 -0.89 8.05 495 4.68 4.28 331
ccc 1 1155 -12.95 4.00 -8.82 -10.92 17.14 12.96 10.26 9.94 11.43
Communications 6 -0.50 -1.61 -1.84 -1.51 -0.28 1.29 1.62 1.86 1.53 1.08
Consumer Cyclic 32 1.02 -1.09 -0.59 -0.50 -0.54 227 110 1.08 0.72 0.88
Consumer Stable 14 043 -0.64 -0.67 -0.13 -0.11 1.06 067 0.72 0.31 0.34
Energy 8 147 -104 -071 -0.71 -0.20 235 107 078 0.82 0.81
Industrial 18 -0.29 -061 -0.53 -0.53 0.08 0.85 0.92 0.90 0.70 0.71
Materials 11 -0.28  -069 -0.77 -0.41 0.60 0.81 0.70 0.80 0.54 0.94
Technology 4 -1.17 -119  -0.89 1.33 -0.56 117 119 094 1.92 0.97

Panel C: Average Percentage Pricing Error (%) Panel D: Absolute Percentage Pricing Error (%)
Overall 93 -29.62 -70.91 -68.94 -11.88 24.42 114.29 76.20 78.17 45.63 68.88
AAA 1 -6.60 -82.04 -74.13 47.96 3.40 70.69 82.04 75.42 80.03 56.99
AA 6 -100.00 -67.72 -85.95  -21.09 -3.91 100.00 82.60 86.11 44.56 69.12
A 25 -82.60 -71.86 -68.88 -1.95 9.69 97.29 78.14 80.27 47.33 55.39
BBB 44 -25.54 -72.85 -69.50  -17.29 40.35 119.78 76.84 78.82 44.37 80.26
BB 12 15.92 -70.77 -69.28 -6.81 16.01 11145 7273 76.82 43.01 58.47
B 4 182.82 -50.96 -50.61  -29.71 33.91 196.57 62.82 59.60 51.82 64.48
CcccC 1 117.78 -50.82 -7.35  -16.28 -54.47 131.60 50.85 42.83 37.14 58.59
Communications 6 -62.16 -76.83 -77.03  -39.66 31.97 82.63 77.83 79.42 51.39 87.03
Consumer Cyclic 32 14.04 -72.77 -72.08 -6.97 6.22 154.04 75.83 80.02 43.77 60.93
Consumer Stable 14 -55.69 -71.10 -64.90 -17.18 3.18 107.27 80.71 79.44 38.03 43.72
Energy 8 -5.28 -66.81 -76.71  -23.08 17.52 133.16 71.67 78.17 38.10 50.46
Industrial 18 -51.63 -66.06 -56.16  -19.15 41.55 7467 76.29 75.49 45.10 71.85
Materials 11 -66.48 -70.35 -73.29 9.67 86.40 85.74 72.67 75.50 58.27 125.59
Technology 4 -87.25 -77.93 -75.78 4.83 -0.78 87.25 79.34 76.47 61.09 60.87
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Table 5: Fitting Errors of Equity Volatility in Structural Credit
Risk Models

This table reports the tting errors of equity volatility under each of ve structural models.
Fitting errors are reported as the average, absolute, average percentage, and absolute percent-
age di erences between the model implied and observed annualized equity volatility, across
monthly observations from January 2002 to December 2004. The tted errors of equity volatil-
ity are calculated in a similar fashion. The ve model speci cations include Merton (1974),
Black and Cox (1976), Longsta and Schwartz (1995), Collin-Dufresne and Goldstein (2001),
and the double exponential jump di usion (DEJD) model used in Huang and Huang (2012).

Firms Fitting Errors of Equity Volatility in Five Di erent Models

by ratings/sectors number Merton BC LS DEJD CDG Merton BC LS DEJD CDG

Panel A: Average Fitting Error (%) Panel B: Absolute Fitting Error (%)
Overall 93 5.32 -6.36 -0.77 -7.21  -0.53 26.11 12.09 17.01 11.61 11.87
AAA 1 -3.69 1.03 7.31 1.83 -5.03 12.04 14.42 1555 13.56 11.81
AA 6 -23.91 -2.29 2.84 -7.97 -0.99 2391 10.46 13.32 9.91 9.01
A 25 -13.77 -4.95 -6.78 -6.26 -1.15 15.66 10.00 10.66 9.50 8.40
BBB 44 1.92 -5.93  -2.88 -6.56 -1.16 18.32 1048 13.20 10.01 9.42
BB 12 11.99 -6.82 12.08 -8.81 -1.16 23.79 14.08 24.70 15.89 16.10
B 4 75.80 -31.88 29.71 -17.42 -2.24 83.67 33.62 69.56 28.69 32.70
CCC 1 455.21 15.45 -64.06 -3.47 64.65 45521 32.11 64.06 23.46  90.07
Communications 6 -8.80 -12.79 -6.90 -16.82 -3.37 18.82 17.07 17.90 18.56 18.03
Consumer Cyclic 32 20.28 -5.89 -5.46 -7.32 1.10 40.10 11.72 16.20 11.02 12.46
Consumer Stable 14 -1.46 -4.81  10.04 -4.15  -0.90 26.77 11.04 21.15 9.50 9.09
Energy 8 12.43 -13.50 -4.03 -2.80 0.76 26.93 15.37 22.73 10.35 11.94
Industrial 18 -2.68 -4.22 0.17 -8.48 -1.68 13.29 11.34 14.82 12.19 11.05
Materials 11 -7.08  -2.26 1.28 -4.84  -2.92 11.74  9.03 10.30 8.70  9.27
Technology 4 -13.54 -12.47 463 -12.17 1.19 18.44 16.37 24.39 21.18 18.43

Panel C: Average Pct Fitting Error (%) Panel D: Absolute Pct Fitting Error (%)
Overall 93 7.09 -5.44 6.40 -8.96 7.33 58.29 27.88 40.49 2553 28.41
AAA 1 5.03 2140 39.47 22.23 0.60 31.98 43.20 51.85 41.33 30.02
AA 6 -72.12 6.57 25.67 -15.04 6.61 7212 3167 45.25 2531 27.39
A 25 -37.18 -4.21  -11.83 -8.99 5.20 4410 28.02 29.56 24.74  25.49
BBB 44 12.06 -7.42 1.02 -9.32 6.11 48.81 26.10 35.00 24.02 25.59
BB 12 36.98 -459  39.25 -6.92 8.54 53.62 27.91 58.90 29.27 34.20
B 4 120.65 -28.54 64.24 -11.47 21.05 125.78 32.33 95.26 31.34 45.24
CCcC 1 559.59  33.77 -75.23 -1.563 5591 559.59 46.11 75.23  29.67 92.76
Communications 6 -13.47  -11.92 -10.51 -21.16 10.67 38.70 29.91 32.49 29.44 38.85
Consumer Cyclic 32 3753 -648 -413 -11.58 7.48 84.72 2737 38.63 2456 27.90
Consumer Stable 14 -20.12 -0.98  26.74 -3.49 5.77 67.18 30.26 50.61 25.48 26.17
Energy 8 19.65 -18.90 15.72 -0.47  11.07 5435 27.63 53.61 2422 28.89
Industrial 18 -2.65 -0.80 2.79 -9.97 6.66 32.14 27.43 3452 25.08 25.63
Materials 11 -18.31 0.83 11.02 -5.59 0.41 33.54 2544 31.32 22.54 25.54

Technology 4 -21.83 -1432 29.84 -10.53 21.20 38.76 29.83 57.78  40.55 44.02
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Table 6: Tests of Model-Implied Sensitivities

This table reports results from the following time-series regression

. _ 10 —cds E
cds(t;t+5)i = i+ 1i ey + 20 g PXhr + Uit

where cﬁ/s(t;t+ 5); denotes the monthly change in rm-i’s 5-year CDS premium; rft10y the monthly
change in the 10-year interest swap rates; rxf, the monthly excess returns on rm-i’s equity; and ??;t

denotes the month-t average of model-implied sensitivities across rms in the same rating or industry
category as rm i for a given structural model. For each month, these rm speci ¢ hedge ratios are
averaged out within either rating (panel A) or industry (panel B) categories. The reported coe cient
values are averaged estimates of ,.; across rms; in angle brackets is reported the number of rms where
2:i = 1 is not rejected at the 5% signi cance level for each of the ve models; the statistics in brackets
are regression R?s. The ve model speci cations include Merton (1974), Black and Cox (1976), Longsta
and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and the double exponential jump di usion
model used in Huang and Huang (2012). The sample period is from January 2002 to December 2004.

Panel A: Rating Speci ¢ Average Sensitivities Panel B: Sector Speci ¢ Average Sensitivities
Regression Models Used Models Used
related
variables Rating # of Firms  Merton BC LS DEJD CDG Sector # of Firms  Merton BC LS DEJD CDG
2 AAA 1 0.92 0.75 0.73 0.87 1.25 Communications 6 1.33 0.70 0.72 1.30 1.25
# of No-Rej <1> <0> <0> <1> <1> <6> <0> <4> <6> <4>
R2 [0.307] [0.580] [0.532] [0.286]  [0.269] [0.421] [0.101] [0.185] [0.418] [0.185]
2:i AA 6 0.70 0.70 0.72 0.70 0.73  Consumer Cyclic 32 1.00 0.70 0.73 0.99 1.01
# of No-Rej <0> <0> <1> <0> <4> <25> <0> <7> <26> <26>
R2 [0.174] [0.137] [0.131] [0.172]  [0.149] [0.292] [0.128] [0.140] [0.316] [0.194]
2:i A 25 0.84 0.72 0.74 0.81 0.83  Consumer Stable 14 0.81 0.70 0.76 0.81 0.83
# of No-Rej <15> <1> <5> <13> <19> <5> <0> <6> <4> <12>
R? [0.272] [0.262] [0.270]  [0.270]  [0.193] [0.194] [0.149] [0.123] [0.201] [0.169]
2 BBB 44 1.00 0.73 0.76 0.94 1.04 Energy 8 1.16 0.70 0.67 1.23 0.74
# of No-Rej <4l1> <4> <6> <40> <35> <6> <0> <1l> <6> <6>
R? [0.279] [0.236] [0.263] [0.278]  [0.199] [0.160] [0.103] [0.107] [0.189]  [0.219]
2i BB 12 1.58 0.81 0.76 1.42 0.94 Industrial 18 1.03 0.70 0.68 0.99 1.06
# of No-Rej <10> <3> <2> <10> <12> <15> <0> <5> <13> <16>
R? [0.507] [0.385] [0.443] [0.506] [0.180] [0.268] [0.099] [0.139] [0.277] [0.133]
2i B 4 2.90 0.88 0.83 2.52 1.25 Materials 11 0.92 0.70 0.70 0.90 0.88
# of No-Rej <4> <3> <3> <4> <4> <7> <0> <0> <7> <8>
R? [0.390] [0.360] [0.384] [0.393] [0.110] [0.276] [0.107] [0.111] [0.300] [0.166]
2:i Cccc 1 3.90 0.95 0.86 3.49 1.00 Technology 4 1.43 0.70 0.69 1.37 0.80
# of No-Rej <1l> <1l> <1l> <1l> <1l> <4> <0> <2> <3> <1l>
R? [0.152] [0.089] [0.095] [0.171] [0.054] [0.596] [0.124] [0.109] [0.669] [0.423]
2 Overall 93 112 0.74 0.76 1.05 0.96 Overall 93 1.02 0.70 0.71 1.01 0.96
# of No-Rej <72> <12> <18> <69> <76> <68> <0> <25> <65> <73>

R? [0.304] [0.263] [0.286] [0.302] [0.187] [0.281] [0.119] [0.132] [0.300] [0.186]
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Table 7: Hedging Performance of Structural Credit Risk Models

This table reports empirical results on the e ectiveness of hedging changes in CDS spreads with
three types of hedge ratios. The rst type (panel A) is rm speci ¢ hedge ratios implied from ve
estimated structural models: Merton (1974), Black and Cox (1976), Longsta and Schwartz (1995),
Collin-Dufresne and Goldstein (2001), and the double exponential jump di usion (DEJD) model
used in Huang and Huang (2012). The other two types of hedge ratios are obtained by averaging rm
speci ¢ hedge ratios within either each credit rating (panel B) or each industry (panel C) category.
Measure of hedging e ectiveness is 1-RMSEL,=RMSE,, where RMSE,, (RMSE,) is the root mean
square error of the hedged (unhedged) position. The statistics in parenthesis are standard errors of
this e ectiveness obtained from 5,000 bootstrap simulations. The sample period is from January 2002
to December 2004.

Structural Models Used

Rating or Sector  # of Firms Merton BC LS DEJD CDG Merton BC LS DEJD CDG
Panel A: Firm Speci ¢ Hedge Ratios Panel B: Rating Speci ¢ Average Hedge Ratios
AAA 1 -0.817 0.088 0.175 0.101 0.009 -0.817 0.088 0.175 0.101 0.009
(0.176)  (0.833) (0.632) (0.085) (0.177) (0.176) (0.833) (0.632) (0.085) (0.177)
AA 6 0.001  -0.327 0.046  -0.095 0.018 0.030  -0.024 0.050  -0.069 0.035
(0.050) (0.318) (0.251) (0.033) (0.070) (0.000) (0.035) (0.023) (0.041) (0.022)
A 25 -0.067  -1.684 0.052  -0.129 0.014 0.099  -0.615 0.118 0.115 0.043
(0.038) (0.155) (0.119) (0.016) (0.034) (0.021)  (0.141) (0.022) (0.030) (0.009)
BBB 44 0.005 -90.298 -113.276 0.001 0.022 0.089  -1.818  -2.057 0.109 0.053
(0.018) (0.116) (0.093) (0.012) (0.027) (0.022) (1.154) (1.147) (0.022) (0.032)
BB 12 0.113  -2.898 -2.237  -21.019 0.184 0.260  -0.058 0.083  -1.822 0.163
(0.042) (0.223) (0.176)  (0.023) (0.050) (0.109) (0.092) (0.101) (0.543) (0.089)
B 4 0.119 -30.461 -0.114 0.039 0.045 0.112 -13.806 0.014 0.073 0.062
(0.064) (0.410) (0.308) (0.041) (0.088) (0.063) (6.826) (0.047) (0.022) (0.118)
CCcC 1 0.058  -9.933 -0.053 0.018 0.001 0.058  -9.933  -0.053 0.018 0.001
(0.307)  (0.806) (0.639) (0.085) (0.173) (0.307) (0.806) (0.639) (0.085) (0.173)
Overall 93 0.070 -29.824  -23.849  -5.133 0.035 0.099 -11.389 -0.359  -0.186 0.058

(0.016) (0.080)  (0.053) (0.008) (0.018) 0.041) (3.628) (0.215) (0.112) (0.040)

Panel C: Sector Speci ¢ Average Hedge Ratios

Communications 6 0143  0.098 0133  0.082  0.090 0124 0104 0.078 0067  0.050
(0.064) (0.322)  (0.250) (0.033) (0.071) (0.027) (0.063) (0.038) (0.017)  (0.060)
Consumer Cyclic 32 0009 -9.674  -0011 0017  0.004 0050 -0.011  0.039 0047  0.032
(0.027) (0.137)  (0.107) (0.014) (0.031) (0.009) (0.167) (0.007) (0.008) (0.005)
Consumer Stable 14 -0.054  0.003 0030  0.060  0.193 0060 0053 0056 0057  0.052
(0.039) (0.208)  (0.158) (0.021)  (0.047) (0.015)  (0.030) (0.010) (0.014) (0.023)
Energy 8 0096 -36.861  -0.134  0.015  0.012 0082 -5429  0.028 0048  0.030
(0.056) (0.267)  (0.214) (0.028)  (0.061) (0.036) (5.189) (0.014) (0.024) (0.016)
Industrial 18 0.056 -71.679 -103.578 -2.329  0.206 0113 -6520 -7.482  0.207  0.096
(0.040) (0.186)  (0.150) (0.020)  (0.041) (0.097) (2.249) (2.243) (0.092) (0.057)
Materials 11 0297 -4.101 0035 0159 -0.198 0045 -0.055 0.181 0146  0.107
(0.065) (0.228)  (0.187) (0.024) (0.053) (0.069) (0.088) (0.087) (0.051) (0.037)
Technology 4 0148  0.098  -4.252 -38.955  0.076 0208 0171 -0.241 -12.060  0.075
(0.150) (0.395)  (0.317) (0.042) (0.087) (0.070)  (0.066) (0.506) (3.304) (0.028)
Overall 93 0070 -29.824 -23.849 5133  0.035 0076 -3310 -1.206 -1.179  0.042

(0.016) (0.080)  (0.053) (0.008) (0.018) (0.018) (1.331) (0.738) (0.571) (0.023)
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Table Al: Summary Statistics of Individual Names

This table reports credit ratings, 5-year credit default swap (CDS) spread, equity volatility, leverage
ratio, asset payout, and recovery rate, for each of the 93 rms similar to those by ratings and sectors
in Table

Last Five-Yr Equity Leverage Asset Recovery
Company Rating CDS (%) Volatility (%) Ratio (%) Payout (%) Rate (%)
Air Prods & Chems Inc A 0.238 28.358 33.067 2.086 40.863
Albertsons Inc BBB 0.692 35.540 54.662 3.650 41.008
Amerada Hess Corp BB 0.817 28.458 61.871 2.929 40.081
Anadarko Pete Corp BBB 0.427 31.244 47.816 1.688 39.439
Arrow Electrs Inc BBB 2.175 44.325 62.279 2.259 39.269
Autozone Inc BBB 0.708 33.269 30.222 0.827 41.977
Avon Prods Inc A 0.230 27.128 17.924 0.998 41.353
Baker Hughes Inc A 0.298 39.469 20.584 1.764 40.833
Baxter Intl Inc BBB 0.493 39.739 33.159 1.739 40.526
BellSouth Corp A 0.550 43.254 39.213 3.308 41.848
Black & Decker Corp BBB 0.389 29.569 45.897 1.566 42.200
Boeing Co A 0.517 36.815 56.877 1.744 39.336
BorgWarner Inc BBB 0.572 29.766 48.270 1.285 40.623
Bowater Inc BB 2.751 30.755 62.578 3.583 41.287
CSX Corp BBB 0.607 29.651 69.128 2.305 40.486
Campbell Soup Co A 0.319 27.171 36.114 2.699 40.063
Caterpillar Inc A 0.350 32.081 57.902 1.992 40.122
Cendant Corp BBB 1.595 42.626 59.864 1.291 39.440
Centex Corp BBB 0.895 41.148 69.613 2.543 40.670
Clear Channel Comms Inc BBB 1.413 45.192 35.378 1.487 40.789
Coca Cola Entpers Inc A 0.327 34.774 68.903 2.281 40.019
Computer Assoc Intl Inc BB 2.889 54.727 35.045 1.044 35.840
Computer Sciences Corp A 0.565 41.122 43.578 1.182 39.763
ConAgra Foods Inc BBB 0.470 27.510 43.829 3.516 39.320
Corning Inc BB 5.412 80.739 41.995 1.138 36.807
Delphi Corp BBB 1.470 40.828 77.164 1.535 40.539
Delta Air Lines Inc CCcC 18.806 81.939 93.931 2.885 26.566
Devon Engy Corp BBB 0.732 31.487 56.495 2.281 40.513
Diamond O shore Drilling Inc BBB 0.488 39.213 32.696 1.701 40.833

Dow Chem Co A 0.817 35.536 48.723 3.166 39.775
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Last Five Yr Equity Leverage Asset Recovery
Company Rating CDS (%) \Volatility (%) Ratio (%) Payout (%) Rate (%)
IKON O ce Solutions Inc BB 3.460 48.604 73.673 1.337 38.221
Intl Business Machs Corp A 0.381 31.166 32.683 0.578 39.991
Intl Paper Co BBB 0.740 30.566 58.274 2.944 39.674
J C Penney Co Inc BB 2.949 45.576 61.984 2.343 37.818
Jones Apparel Gp Inc BBB 0.634 32.547 26.906 1.353 41.338
Kerr Mcgee Corp BBB 0.745 26.472 59.613 3.398 41.242
Lockheed Martin Corp BBB 0.501 32.241 44.982 1.815 41.173
Lowes Cos Inc A 0.356 36.642 19.222 0.587 41.788
Ltd Brands Inc BBB 0.584 44.878 21.283 3.854 41.529
Lucent Tech Inc B 9.525 96.827 63.895 1.255 37.988
MGM MIRAGE BB 2.167 33.197 57.910 2.675 39.764
Masco Corp BBB 0.612 33.101 35.400 2.758 42.234
Mattel Inc BBB 0.534 35.721 21.203 2.269 40.322
May Dept Stores Co BBB 0.608 36.953 52.074 3.923 41.765
Maytag Corp BBB 0.773 38.307 58.938 2.213 41.476
McDonalds Corp A 0.322 38.651 30.956 2.107 40.051
Nordstrom Inc BBB 0.609 