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a b s t r a c t

We examine the joint predictability of return and cash flow within a present value framework, by
imposing the implications from a long-run risk model that allow for both time-varying volatility and
volatility uncertainty. We provide new evidence that the expected return variation and the variance
risk premium positively forecast both short-horizon returns and dividend growth rates. We also confirm
that dividend yield positively forecasts long-horizon returns, but that it does not help in forecasting
dividend growth rates. Our equilibrium-based ‘‘structural’’ factor GARCH model permits much more
accurate inference than univariate regression procedures traditionally employed in the literature. The
model also allows for the direct estimation of the underlying economic mechanisms, including a new
volatility leverage effect, the persistence of the latent long-run growth component and the two latent
volatility factors, as well as the contemporaneous impacts of the underlying ‘‘structural’’ shocks.
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1. Introduction

Counter to the ‘‘old’’ efficient market hypothesis dictum that
speculative returns are largely unpredictable over time, it is now
generally accepted that equity returns are both time-varying and
predictable. It is also widely believed that the predictability of the
aggregate stock market as a whole is the strongest over longer
multi-year horizons.3 At the same time, to the extend that a con-
sensus has emerged it suggests that expected dividend growth
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3 Some of the predictor variables used in establishing long-run return

predictability include: dividend-price, earning-price, and other valuation ratios
(Campbell and Shiller, 1988a,b; Fama and French, 1988; Lamont, 1998; Lewellen,
2004); firms’ net equity payout (Boudoukh et al., 2007) and equity issuance
(Baker et al., 2000); interest-rate variables such as t-bill and t-bond rates, term
spreads, and default spreads (Campbell, 1987; Fama and French, 1989; Hodrick,
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rates for the aggregate market portfolio, or aggregate cash flows,
are much less predictable than the expected returns.4

Much of the literature underlying these findings, and the
choice of predictor variables in particular, have been guided by
the present-value framework pioneered by Campbell and Shiller
(1988a,b), and the implication that the dividend-price ratio, or the
dividend yield, is identically equal to the expected value of the fu-
ture returns discounted by the future dividend growth rates. As
emphasized by Cochrane (2008, 2011), this intimate link between
dividend growth and stock return predictability also implies that
the seemingly stronger empirical evidence for long-run return pre-
dictability is not surprisingly accompanied by seemingly weaker
empirical evidence for long-run dividend growth predictability.

Set against this background, a number of recent studies have
argued that the variance risk premium, or the difference between
options implied and expected variances, possesses superior
forecasting power for stock market returns over shorter within-
year horizons; see, e.g., Bollerslev et al. (2009), Drechsler and Yaron

1992, ); and macroeconomic variables like total investment (Cochrane, 1991), the
consumption-wealth ratio (Lettau and Ludvigson, 2001), and inflation (Campbell
and Vuolteenaho, 2004).

4 Maio and Santa-Clara (forthcoming) have recently challenged this view,
showing that for portfolios comprised of small and value stocks, the dividend-
price ratio is primarily related to future changes in cash flows. With a few notable
exceptions (e.g., Fama and French, 1988; Lettau and Ludvigson, 2005) cash flow
predictability has historically received much less attention in the literature.
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(2011), and Kelly (2011). Motivated by these more recent empirical
findings, we show how explicitly incorporating priced volatility
risk into the present-value framework affords important new
insights into the return vis-à-vis dividend growth predictability
debate across all horizons.

The reduced form VAR framework, as exemplified by Hodrick
(1992) and Campbell (2001), traditionally used for empirically im-
plementing present value relations does not naturally lend itself to
the estimation of models involving priced volatility risk. Instead,
we follow Sentana and Fiorentini (2001) and Rigobon (2003) in de-
signing a ‘‘structural’’ factor GARCH model, in which the factors ex-
hibit time-varying volatility. The dynamics of the factors is derived
endogenously from an extended long-run risk model explicitly
incorporating time-varying consumption volatility and volatility-
of-volatility, or economic uncertainty. The resulting econometric
model separately identifies the long-run risk, volatility, and eco-
nomic uncertainty components, as well as the corresponding struc-
tural shocks and their contemporaneous impact on both returns
and dividend growth.

Estimating the ‘‘structural’’ factor GARCH model by standard
GMM techniques on data for the S&P 500 market portfolio,
we confirm existing empirical evidence that the dividend-price
ratio is useful for predicting long-horizon multi-year returns,
but that it has no predictive power for dividend growth.5 More
important, we document a number of new results pertaining to
the predictability of the volatility factors. In particular, while the
variance risk premium shows significant predictability for returns
over short within-year horizons, it also helps predict dividend
growth. Similarly, the expected return variation appears to be very
informative for predicting dividend growth.

These results are consistent with the findings in Koijen and
Nieuwerburgh (2011) that the high-frequency component of the
dividend-price ratio, which in our setup is driven by two sepa-
rate volatility factors, contains useful information for predicting
expected dividend growth. Our results are also related to Binsber-
gen et al. (2012) and their findings that the term structure of equity
risk premia is particularly steep in the short end, while standard
asset pricing models without priced volatility risk typically imply
higher equity premia at the long end.

In addition to the new empirical evidence pertaining to
the short-run predictability of returns and dividend growth, by
explicitly identifying the systematic risk factors at work, our
‘‘structural’’ factor GARCH approach also helps shed new light on
the underlying economic mechanisms. Specifically, we find that
the long-run expected growth component is highly persistent with
a first-order autocorrelation coefficient close to one (ρx = 0.988)
at the monthly level, consistent with the idea in Bansal and Yaron
(2004) that it acts as the most important driver of the risk premium
dynamics over long horizons.6 The model also clearly differentiates
and is able to accurately estimate the persistence of the
consumption volatility component (ρσ = 0.64) and the volatility-
of-volatility, or economic uncertainty, component (ρq = 0.46),
advocated by Bollerslev et al. (2009), both of which are intimately
linked to the shorter-run predictability patterns in the data. In
terms of the underlying ‘‘structural’’ shocks, we find a negative
relationship between the long-run growth and consumption

5 Compared to earlier empirical findings based on univariate regressions (Rozeff,
1984; Fama and French, 1988; Campbell and Shiller, 1988b) and traditional present-
value homoskedastic VAR’s (Hodrick, 1992; Campbell, 2001; Cochrane, 2008), our
‘‘structural’’ factor GARCH model results in much sharper inference, with the actual
point estimates systematically falling within the standard error bands obtained
from the more conventional procedures.

6 Nakamura et al. (2012) have recently shown how the long-run growth factor
may also be identified from cross-country aggregate consumption data under
additional simplifying assumptions.
volatility shocks (akin to a ‘‘leverage effect’’), as well as a negative
relationship between the consumption volatility and volatility
uncertainty shocks (interpretable as a separate new ‘‘leverage
effect’’). The price-dividend ratio also responds negatively to both
consumption volatility and volatility uncertainty shocks.7

The basic motivation behind the new ‘‘structural’’ factor GARCH
model is in line with a growing recent literature seeking to
explicitly incorporate the effect of stochastic volatility in asset
pricing models. For example, Bansal et al. (2014) demonstrate
that ignoring the variation in volatility leads to counter-intuitive
economic interpretation of risk premium dynamics. Similarly,
Campbell et al. (2013) examine the cross-sectional return pre-
dictability in an ICAPM framework that allows for stochastic
volatility.8 In contrast to these studies, our focus is on the joint
predictability of returns and cash flows within the context of a
‘‘structural’’ econometric model explicitly designed to accommo-
date time-varying volatility in an internally consistent fashion.
Recent studies by Binsbergen and Koijen (2010) and Piatti and Tro-
jani (2012) have also relied on a latent variable approach with het-
eroskedastic shocks for incorporating the effect of time-varying
volatility within a present-value framework. Importantly, how-
ever, we differ from both of these studies by specifying an empiri-
cally more realistic two-factor volatility structure and by explicitly
including both the actual and risk-neutral expected variation in the
formulation and estimation of the model.9

The rest of the paper is organized as follows. Section 2 presents
the equilibrium asset pricing model underlying our empirical
investigations. Section 3 describes the data and the formulation
of the ‘‘structural’’ factor GARCH model and the GMM-based
parameter estimation results. Section 4 details the return and
cash flow predictability implied by the model, and contrast the
results with those obtained by other less structured reduced form
estimation procedures. Section 5 concludes.

2. Asset pricing model

Our equilibrium-based approach combines the long-run risk
model pioneered by Bansal and Yaron (2004), with the model
in Bollerslev et al. (2009) explicitly allowing for stochastic
volatility-of-volatility, or time-varying economic uncertainty. This
general setup naturally accommodates the magnitude of both the
equity and variance risk premia, as well as the long- and short-
horizon predictability patterns in the returns and cash flows within
a unified framework.

2.1. Model setup and assumptions

Following the long-run risk literature, we assume an en-
dowment economy with a representative agent equipped with
Epstein and Zin (1991) recursive preferences. The logarithm of
the intertemporal marginal substitution for this agent may conse-
quently be expressed as,

mt+1 = θ log δ −
θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (1)

7 The importance of economic uncertainty for explaining asset prices has also
recently been emphasized from different perspectives by Bekaert et al. (2009), Nieto
and Rubio (2011), and Corradi et al. (2013), among others.

8 Our ‘‘structural’’ factor GARCH estimate for the persistence in consumption
volatility ρσ , and in turn the effect of allowing for time-varying volatility, are much
larger than the estimates reported in Campbell et al. (2013) based on simple VAR
procedures and imprecise variance measures.

9 Other recent studies seeking to incorporate more realistic two-factor volatil-
ity structures in the standard long-run risk model include Zhou and Zhu
(2013), Branger and Vòlkert (2012), and Branger et al. (2011), among others.
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where rc,t+1 ≡ log(Rc,t+1) refers to the logarithmic return on the
consumption asset, ∆ct+1 ≡ log(Ct+1/Ct) denotes the growth
rate of consumption, 0 < δ < 1 is the time discount factor,
γ > 0 denotes the risk aversion parameter, and θ ≡

1−γ

1−ψ−1 where
ψ > 0 refers to the intertemporal elasticity of the substitution.
As is standard in the long-run risk literature, we will assume that
γ > 1, implying that the representative agent is more risk averse
than log utility, and that ψ > 1, and therefore θ < 0, implying a
preference for early resolution of uncertainty.

Let xt denote the long-run mean of consumption growth as
in Bansal and Yaron (2004), and σ 2

t and qt refer to two separate
volatility factors along the lines of Bollerslev et al. (2009). For
notational convenience, collect the consumption growth ∆ct , the
log dividend growth ∆dt , and the latent state variables in the
vector Yt = (∆ct , xt , σ 2

t , qt , ∆dt)′. The importance of allowing for
multiple volatility factors in accurately describing both short- and
long-horizon time-varying return and volatility dynamics has also
recently been highlighted by Bollerslev et al. (2009), Drechsler and
Yaron (2011), Bollerslev et al. (2012), Zhou and Zhu (2013), Branger
and Vòlkert (2012), among others.

We will assume that the state vector Yt has affine conditional
mean and variance dynamics,

Yt+1 = µ + FYt + HGtzt+1, (2)

where zt+1 ≡ [zc,t+1, zx,t+1, zσ ,t+1, zq,t+1, zd,t+1]
′ denotes a vector

of independent standard normally distributed shocks. We rank
all of the ‘‘structural’’ consumption shocks, including the two
volatility shocks zσ ,t and zq,t , before shocks to dividends zd,t . Based
on the intuition that level shocks are more ‘‘fundamental’’ than
shocks to volatility, we also put the zc,t and zx,t shocks before
the two volatility shocks. The conditional mean of Yt is in turn
determined by the constant vector µ and the loading matrix F . We
assume that this loading matrix takes the sparse form,

F =


0 1 0 0 0
0 ρx 0 0 0
0 0 ρσ 0 0
0 0 0 ρq 0
0 φdx 0 0 ρd

 , (3)

in which the diagonal elements characterize the own lagged
dependencies and the off-diagonal elements describe the dynamic
first-order cross dependencies. In particular, φdx allows the
dividend growth rate ∆dt+1 to directly load on the lagged long-
run consumption growth component xt . Allowing ∆dt+1 to also
depend on its own lag permits a non-redundant pricing effect
of dividend growth risk on the equity premium. Restricting this
coefficient ρd to be zero reduces the model’s growth dynamics to
that of a ‘‘standard’’ long-run risk model. However, our estimates
of the model discussed below strongly rejects such a specification.

The conditional second-order dynamics of the state vector is
determined by the time-varying diagonal volatility matrix Gt and
the constant loading matrix H ,

Gt =


σt 0 0 0 0
0

√
qt 0 0 0

0 0
√
qt 0 0

0 0 0
√
qt 0

0 0 0 0 σt



H =


1 0 0 0 0
0 ϕx 0 0 0
0 ϕxsσ ,x 1 0 0
0 ϕxsq,x sq,σ ϕq 0
0 ϕxsd,x sd,σ ϕqsd,q ϕd

 .

(4)

Our choice of Gt differs from the models in Drechsler and Yaron
(2011) and Branger and Vòlkert (2012) by allowing both xt+1 and
σ 2
t+1 to have time-varying volatility

√
qt . Our choice of Gt also

nests the model in Bollerslev et al. (2009) by zeroing out the long-
run growth component, equating the dividend and consumption
growth, and fixing si,j = 0 for i ≠ j, thereby rendering H diago-
nal.10 Identification of the lower triangular volatility loading ma-
trix H is effectively accomplished through heteroskedasticity, and
cross-dependencies between the different state variables implied
by the form of the time-varying volatility.

Further, denoting the columns of H ≡ [h1, h2, h3, h4, h5], the
‘‘square’’ of HGt may be conveniently expressed in affine form as,

HGtG′

tH
′
=


j=1,5

hjh′

jσ
2
t +


j=2,3,4

hjh′

jqt . (5)

This two-factor volatility structure is distinctly different from the
one-factor setup recently employed in Campbell et al. (2013). As
discussed in more detail below, it affords an empirically much
more realistic description of the return and cash flow dynamics,
and in turn the predictability patterns obtained by imposing the
equilibrium-based restrictions.

2.2. Model implications

In order to deduce the ‘‘structural’’ model restrictions that guide
our empirical analysis, we begin by solving the consumption-based
asset pricing model using similar techniques to the ones in Bansal
and Yaron (2004), Bansal et al. (2007b), and Drechsler and Yaron
(2011). In the spirit of Campbell (1993, 1996), we then substitute
out the hard-to-measure consumption and its volatility dynamics
with directly observable market return and its variance measures.

Standard solution methods applied in the long-run risk
literature readily imply that the stochastic discount factor mt+1,
the return on consumption rc,t+1, and the market return on
dividends rt,t+1, must satisfy

mt+1 − Et(mt+1) = −Λ′HGtzt+1,
rc,t+1 − Et(rc,t+1) = Λ′

cHGtzt+1,

rt,t+1 − Et(rt,t+1) = Λ′

dHGtzt+1,

(6)

where Λ = γ e1 + κ1(1 − θ)A, for A = (0, Ax, Aσ , Aq, 0), denotes
the price of risk for the factor shocks, Λc = e1 + κ1A, Λd =

e5 + κd,1Ad, κ1 and κd,1 refer to the Campbell and Shiller (1988b)
log-linearization constants based on the ‘‘usual’’ approximations
for consumption return rc,t+1 ≈ κ0 + κ1νt+1 − νt + ∆ct+1 and the
aggregate market return rt,t+1 ≈ κd,0 + κd,1wt+1 − wt + ∆dt+1,
respectively, and the two selection vectors are defined by e1 ≡

[1, 0, 0, 0, 0]
′ and e5 ≡ [0, 0, 0, 0, 1]

′.11Given these expressions,
it is possible to solve for the market return variance Vart(rt,t+1),
the variance risk premium VRPt , and the log dividend-price ratio
dpt , as

Vart(rt,t+1) = (1 + κd,1Ad,d)
2ϕ2

dσ 2
t +


j=2,3,4

Λ′

dhjh′

jΛdqt , (7)

10 We also experimented with two alternative setups, one closer to Drechsler
and Yaron (2011) with Gt = diag[σt ,

√
qt , σt ,

√
qt , σt ], and the other one closer

to Branger and Vòlkert (2012) with Gt = diag[σt , σt , σt ,
√
qt , σt ], resulting in

qualitatively similar predictability results to the ones reported below. However,
both of these alternative specifications were rejected at conventional significance
levels by the corresponding GMM-based J-tests for over-identifying restrictions.
Further details concerning these alternative models and empirical results are
reported in the supplementary Appendix A.
11 As further detailed in the supplementary Appendix A, the market prices of
risks also depend implicitly on the coefficients in the wealth-consumption ratio
νt = A0 + [0, Ax, Aσ , Aq, 0]

′Yt and the price-dividend ratio wt ≡ −dpt = Ad,0 +

[0, Ad,x, Ad,σ , Ad,q, Ad,d]
′Yt .
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VRPt =


j=1,5

Λ′

dhjh′

jΛdsq,1 +


j=2,3,4

Λ′

dhjh′

jΛdsq,2


qt , (8)

dpt = −A0,d − Ad,xxt − Ad,σ σ 2
t − Ad,qqt − Ad,d∆dt , (9)

where sq,1 = −(ϕxsσ ,xh′

2 + h′

3)Λ and sq,2 = −(ϕxsq,xh′

2 +

sq,σh′

3 + ϕqh′

4)Λ. We will impose these ‘‘structural’’ restrictions on
the empirical model estimated below.

Even though our empirical strategy of substituting out con-
sumption means that some of the parameters in the autoregressive
loading matrix F and the volatility loading matrix H are not iden-
tified, the specific structures for the two loading matrices still pro-
vide useful guidance on how to restrict the dynamics. In particular,
denote the sub-vector of Yt that excludes consumption growth by
ft ≡ [σ 2

t , qt , ∆dt , xt ]′, it follows that

ft+1 = µ + ρft + Sϵt+1, (10)

where

ρ =

ρσ 0 0 0
0 ρq 0 0
0 0 ρd φdx
0 0 0 ρx

 S =

 1 0 0 sσ ,x
sq,σ 1 0 sq,x
sd,σ sd,q 1 sd,x
0 0 0 1

 , (11)

and the vector of innovations ϵt+1 ≡ [
√
qtzσ ,t+1, ϕq

√
qtzq,t+1, ϕd

σtzd,t+1, ϕx
√
qtzx,t+1]

′ is conditionally heteroskedastic.12

3. ‘‘Structural’’ estimation results

The consumption-based asset pricing model with volatility
uncertainty, outlined in the previous section, imposes a number of
restrictions pertaining to the dynamic dependencies and possible
feedback effects between the expected variance, the variance risk
premium, the dividend growth rate, and the dividend-price ratio.
Our new ‘‘structural’’ factor GARCH model is designed to honor
these restrictions within a tractable econometric framework.

3.1. Data description

Our empirical investigations are based on end-of-month S&P
500 index returns, as a proxy for the aggregate market portfolio,
and the S&P 500 dividend payments, as a proxy for the correspond-
ing aggregate cash flows. All of our S&P 500 data are obtained from
DataStream, and cover the period from January 1990 to November
2011, for a total of 262 monthly observations.13

Following standard practice in the literature, we use the trail-
ing 12-month dividend-price ratio to account for the strong
seasonality inherent in the dividend payouts; see, e.g., the discus-
sion in Bollerslev and Hodrick (1995). Accordingly, the month t log
dividend-price ratio dpt , is defined by,

dpt = log

Divt−11 + · · · + Divt

12Pt


, (12)

whereDivt denotes the dividend payments from the end-of-month
t − 1 to the end-of-month t , and Pt denotes the end-of-month t
price. Our measures for the month t + 1 log dividend growth rate

12 The value of µ is immaterial to all of our predictability results. Also, the
reordering of the elements in ft relative to Yt merely serves to facilitate comparisons
with other benchmark models below, and does not affect any of the results.
13 While the S&P 500 data are obviously available over a much longer sample
period, some of the key variation measures employed in our analysis are only
available starting in 1990.
∆dt+1 and the log returns including dividends rt,t+1, are similarly
defined from this ratio as,

∆dt+1 = log

Divt−10 + · · · + Divt+1

Divt−11 + · · · + Divt


, (13)

rt,t+1 = log


Pt+1 +

Divt−10+···+Divt+1
12

Pt


, (14)

with longer-run dividend growth rates and multi-period returns
obtained by summation.

We consider three distinct empirical variation measures: the
options implied variation IVt , the expected return variation ERVt ,
and the variance risk premium VRPt . Our measure for the options
implied variation is based on the square of the Chicago Board
of Options Exchange (CBOE) VIX volatility index. This model-free
measure is (approximately) equal to the market risk-neutral, or
Q, expectation of the one-month-ahead return variation under
very general assumptions. Our construction of the corresponding
actual, or P, expectation, is based on the linear projection of the
monthly realized variance RVt,t+1 on its lagged daily RVt− 1

22 ,t ,
weekly RVt− 5

22 ,t , and monthly RVt−1,t values, along with the

implied variation IVt ; i.e.,14

ERVt,t+1 = α0 + α1RVt− 1
22 ,t + α2RVt− 5

22 ,t

+ α3RVt−1,t + α4IVt . (15)

This mimics the popular HAR-RV model proposed by Corsi (2009).
Importantly, the addition of IVt as an additional right-hand-
side variable imbues the formulation in (15) with an additional
persistent long-run predictor variable, which in the traditional
HAR-RV model would be captured by longer-run realized variation
measures.15 Finally, our measure for the variance risk premium
is simply given by the difference between our risk-neutral and
statistical expectations of the one-month-ahead return variation;
i.e., VRPt = IVt − ERVt .

To illustrate the basic features of the different variables, Fig. 1
plots the monthly time series of stock returns, dividend growth
rates, dividend-price ratios, and variance risk premia. The large
losses in market values and the increased volatility during the
recent economic downturn are immediately evident in the plots of
the returns and cash flows. The plot for the dividend-yields shows
a sharp drop throughout the 1990s, but an increase after the burst
of the tech bubble in 2001, reaching a new peak in the fourth
quarter of 2008 around the advent of the global financial crisis
and the stock market crash.16 The variance risk premium shown
in the last panel is on average positive with occasional negative
spikes, the largest of which occurs in the fall of 2008 at the onset of
the financial crises. Summary statistics for the same four variables,
along with the options implied and expected variation measures
underlying the variance risk premium, are reported in Table 1.

14 Our regression-based estimates of the α’s rely on overlapping daily observa-
tions for all of the variation measures, thus implicitly assuming that the same rela-
tionship holds every day of the month. This greatly enhances the accuracy of the
estimates compared to the estimates obtained by the use of non-overlapping
monthly observations only.
15 We also experimented with decomposing the realized variation measures into
their continuous and discontinuous parts. Although this often helps for shorter-run
forecasting, consistent with the results in Andersen et al. (2007), we found that the
monthly forecasts and R2s from these more elaborate models were virtually the
same as the ones from the simple-to-implement HAR-RV type formulation in (15).
16 The sharp decline observed in the 1990s has been attributed to firms’
substitution of dividend payments by share repurchases; see, e.g., Koijen and
Nieuwerburgh (2011), along with the earlier related discussion in Bagwell and
Shoven (1989).
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Fig. 1. Returns and dividends.
We turn next to our new present value framework and
‘‘structural’’ model designed to describe these general features and
inherent dynamic dependencies.

3.2. ‘‘Structural’’ factor GARCH

The dynamics of the asset pricing model in Section 2 is suc-
cinctly summarized by the state vector ft and Eqs. (10) and (11).
The state vector ft is, of course, not directly observable. To cir-
cumvent this, we define the ‘‘observable’’ state vector Xt ≡

[ERVt , VRPt , ∆dt , dpt ]′. From the solution of the model, the Xt vec-
tor is directly related to the latent ft vector by the linear equa-
tions,17

Xt = µX + Qft Q =

 Q1,1 Q1,2 0 0
0 Q2,2 0 0
0 0 1 0

−Ad,σ −Ad,q −Ad,d −Ad,x

 , (16)

where Q1,1 = (1 + κd,1Ad,d)
2ϕ2

dρσ , Q1,2 =


j=2,3,4 Λdhjh′

jΛdρq,
and Q2,2 = (1 + κd,1Ad,d)

2sq,1 +


j=2,3,4 Λ′

dhjh′

jΛdsq,2. Given the
standard set of assumptions about the structural parameter values
typically employed in the long-run risk literature, all of the Q pa-
rameters would be positive. Conversely, Ad,σ , Ad,q, and Ad,d would
all be negative, while Ad,x is naturally expected to be positive.

Now combining the model for ft in Eqs. (10) and (11) with the
expression for Xt in Eq. (16), it follows that

BXt+1 = µ̃ + ρ̃BXt + S̃ϵ̃t+1, ϵ̃t+1 = G̃tzt+1, (17)

17 Additional details concerning the solution of the model is available in the
supplementary Appendix A.
where G̃t = diag[Q1,1
√
qt ,Q2,2ϕq

√
qt , ϕdσt , −Ad,xϕx

√
qt ], and18

B =


1 −

Q1,2

Q2,2
0 0

0 1 0 0
0 0 1 0

Ad,σ

Q1,1

Q1,1Ad,q − Ad,σQ1,2

Q1,1Q2,2

ρd

1 − κd,1ρd
1



ρ̃ =


ρσ 0 0 0
0 ρq 0 0

0 0 ρd
φdx

−Ad,x
0 0 0 ρx


(18)

S̃ =



1 0 0
Q1,1

−Ad,x
sσ ,x

Q2,2

Q1,1
sq,σ 1 0

Q2,2

−Ad,x
sq,x

1
Q1,1

sd,σ

1
Q2,2

sd,q 1
1

−Ad,x
sd,x

0 0 0 1


. (19)

Multiplying the ‘‘structural’’ VAR in Eq. (17) by B−1, the corre-
sponding reduced form VAR(1) representation for Xt+1 becomes,

Xt+1 = B−1µ̃ + ΦXt + ut+1, (20)

where Φ=B−1ρ̃B, ut+1 = Φ−1
0 ϵ̃t+1, and Φ−1

0 = B−1S̃. As this
representation makes clear, ignoring the heteroskedasticity in the

18 As explained in more detail in the supplementary Appendix A, the matrix B
matrix is obtained from the matrix Q by normalizing its diagonal elements to unity.
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Table 1
Summary statistics. The table reports standard summary statistics and correlations
for the S&P 500 return rt,t+1 , dividend growth rate ∆dt , dividend-price ratio dpt ,
options implied variance IVt , expected variance ERVt , and variance risk premium
VRPt . The returns, dividend growth, and dividend-price ratio are all in annualized
percentage form. All of the variance variables are in monthly percentage form. The
sample period extends from February 1990 to November 2011, for a total of 262
monthly observations.

Mean Std Skew Kurt AC1

rt,t+1 8.19 15.33 −0.76 4.48 0.07
∆dt 3.92 8.79 −0.46 10.02 −0.26
dpt −3.91 0.31 0.08 2.32 0.98
IVt 40.30 36.47 3.23 18.07 0.81
ERVt 28.54 36.64 4.62 30.08 0.69
VRPt 11.75 14.93 −3.37 38.42 0.27

Correlations

rt,t+1 ∆dt dpt IVt ERVt VRPt

rt,t+1 1.00 0.34 −0.03 −0.42 −0.48 0.15
∆dt 1.00 −0.02 −0.25 −0.25 −0.01
dpt 1.00 −0.05 −0.02 −0.07
IVt 1.00 0.92 0.19
ERVt 1.00 −0.21
VRPt 1.00

reduced form shocks ut+1, and interpreting the model for Xt+1 in
(17) as a standard homoskedastic VAR(1), the B and S̃ matrices
would not be jointly identified. In empirical macroeconomics, this
lack of identification is usually ‘‘solved’’ by imposing that Φ0 is
lower triangular. However, as argued by Sentana and Fiorentini
(2001), Rigobon (2003) and Rigobon and Sack (2003), among
others, under the maintained assumption that the underlying
‘‘structural’’ shocks are independent, it is possible to identify the
Φ0 matrix, and in turn both B and S̃, through the heteroskedasticity
in ϵ̃t+1.

Meanwhile, rather than specifying the time-varying covariance
matrix for the ‘‘structural’’ shocks to be an explicit function of the
latent qt and σ 2

t risk factors, in the implementation reported on
below we adopt a more flexible and empirically realistic GARCH
approach for characterizing the dynamic dependencies in ϵ̃t+1.
Specifically, let Σt+1 denote the conditional covariance matrix
of ϵ̃t+1. We will then assume that Σt+1 may be described by
the following relatively simple yet flexible diagonal GARCH(1,1)
model,

diag(Σt+1) = (I − Γ − Υ )Θ−1
0 ϖu + Γ diag(Σt) + Υ ϵ̃2

t , (21)

where Θ0 = Φ−1
0 ⊙ Φ−1

0 , and ϖu denotes the unconditional
covariance matrix of the reduced form shocks ut+1 = Φ−1

0 ϵ̃t+1.
Consequently, the second order dynamics of ut+1 will follow the
more complicated non-diagonal GARCH(1,1) structure,19

vec(Ωt+1) = Θ1(I − Γ − Υ )Θ−1
0 ϖu + Θ1Γ Θ−1

0 diag(Ωt)

+ Θ1Υ Θ2vec(utu′

t). (22)

By explicitly parameterizing this implied conditional heteroskedas-
ticity in ut+1, it is possible to identify and separately estimate all of
the ‘‘structural’’ parameters in (17)�(19).

The diagonal GARCH(1,1) model in (21) freely parametrizes the
persistence in the ‘‘structural’’ shocks. Consistent with our initial
estimates of the model, and the implication from the underlying
consumption-based asset pricing model, we impose the restriction
that the autoregressive dependencies in the GARCH expected

19 More formally, Θ1 = (Φ−1
0 ⊗ Φ−1

0 )Il , Θ2 = [vec(Φ−1′

0,(1)Φ
−1
0,(1)), vec(Φ−1′

0,(2)

Φ−1
0,(2)), vec(Φ−1′

0,(3)Φ
−1
0,(3)), vec(Φ−1′

0,(4)Φ
−1
0,(4))]

′ , where Φ−1
0,(i) denotes the ith row of the

square matrix Φ−1
0 , and the 16×4 matrix Il helps to transform the vector vec(Ωt )

into diagonal matrix form.
variance and the dividend-price ratio are the same, i.e., Γ1,1 +

Υ1,1 = Γ4,4 + Υ4,4 = ρq. Guided by our initial diagnostic tests,
we also restrict the dividend growth shock to have only ARCH and
no GARCH effect, i.e., Γ3,3 = 0. All-in-all, this leaves us with a total
of nine conditional variance parameters to be estimated.

Let ξ denote the vector of stacked parameters comprised of
the conditional mean parameters in B, S̃, µ̃, and ρ̃, along with
the conditional variance parameters in Γ , Υ , and ϖh. Assuming
that the reduced form shocks ut+1 are jointly normally distributed,
the logarithm of the density for Xt+1 conditional on Xt and Ωt+1,
or equivalently the contribution to the log-likelihood function
coming from Xt+1, may be expressed as,

Lt(Xt+1, ξ) = −2 log 2π −
1
2

log |Ωt | −
1
2

(Xt+1 − B−1µ̃

− ΦXt)
′Ω−1

t (Xt+1 − B−1µ̃ − ΦXt)

= −2 log 2π −
1
2

log |Σt | + log |S̃−1B|

−
1
2

(Xt+1 − B−1µ̃ − B−1ρ̃BXt)
′S̃−1

× BΣ−1
t B′S̃−1′

(Xt+1 − B−1µ̃ − B−1ρ̃BXt). (23)

Even if the assumption of conditional normality is violated em-
pirically, the estimate for ξ obtained by maximizing the result-
ing log-likelihood function, defined by summing (23) over the full
sample, remains consist and asymptotically normally distributed
under quite general conditions; see, e.g., Bollerslev and Wooldridge
(1992).

The long-run implications from multivariate GARCH models can
be very sensitive to estimation errors and small perturbations in
a few parameters. To help guard against this, we augment the
Gaussian-based score for the ‘‘structural’’ VAR-GARCH model with
an additional set of moment conditions designed to ensure that
the unconditional variances of the reduced form errors implied by
the model match their standard VAR-based analogs.20 Expressing
this additional set of moments in parallel to Eq. (23) and the
contribution to the likelihood function coming from Xt+1, we have

Wt(Xt+1, ξ) = ϖu − diag

(Xt+1 − µOLS

− ΦOLSXt)

× (Xt+1 − µOLS
− ΦOLSXt)

′


, (24)

where the ‘‘OLS’’ superscript indicates the parameters obtained
from equation-by-equation least squares estimation of the reduced
form VAR. The estimates for ξ reported below are obtained
by applying standard iterated GMM to the conditional set of
moments defined by the score for the conditional density in
(23), say ∂ξ Lt(Xt+1, ξ), augmented with the moment conditions in
(24),21

g(Xt+1, ξ) =


∂ξ Lt(Xt+1, ξ)
Wt(Xt+1, ξ)


. (25)

We turn next to a discussion of the resulting ξ̂ , and the implications
of the estimates in regard to the dynamics of the systematic risk
factors and the dependencies among the ‘‘structural’’ shocks.

20 This mirrors the variance targeting approach originally advocated by Engle and
Mezrich (1996). However, in contrast to that two-step approach, the GMM-based
procedure applied here jointly estimates all of the parameters in ξ in a single step.
21 This idea of augmenting the likelihood function with additional information
mirrors the use of quasi-Bayesian priors, applied in a different context by,
e.g., Hamilton (1991), and may also be seen as a form of shrinkage type estimation.
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3.3. Estimation results

The dynamic dependencies in the observable state vector Xt D
TERVt ; VRPt ; � dt ; dpt U0underlying our GMM estimation is directly
related to the latent state vector ft D T� 2

t ; qt ; � dt ; xt U0of interest
by the affine equation Xt D � X C Qft . This allows us to infer both
the contemporaneous interaction matrix Q and the autoregressive
matrix r describing the mean dynamics in ft C1 D mC r ft C S� t C1

from the estimates for B and Qr based on BXt C1 D Q� C Qr BXt C
QSQ� t C1, and the relations in Eq. (18) above. Similarly, the estimated
volatility loading matrix QS for the observable state vector Xt allow
us to infer the volatility loading matrix S for the latent state vector
ft from Eq. (19), while the estimated volatility dynamics of the Q� t C1

shocks effectively determines the implied volatility dynamics of
the ``structural'' � t C1 shocks.

We begin with a discussion of the estimates for B and Qr ,
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(26)

where the numbers in parentheses represent asymptotic standard
errors. With the exception of B1;2 and Qr 3;4, all of the individual
parameter estimates are highly statistically significant. All of the
estimates also have the ``correct'' signs vis-a-vis the implications
from the equilibrium-based model and the ``structural'' VAR.

In particular, the negative estimates for the loadings for the div-
idend price ratio reported in the last row of the B matrix are con-
sistent with the idea that the two volatility components � 2

t and qt ,
and cash flow growth � dt , are all genuine risk factors with negative
market prices of risks. 22 Within the context of the standard Bansal
and Yaron (2004) long-run risk model, these negative contempora-
neous relationships between the dividend-price ratio and the other
state variables, or risk factors, are critically dependent on the risk
aversion parameter 
 > 1 and the intertemporal elasticity of sub-
stitution  > 1. As such, our ``structural'' estimation results indi-
rectly support this commonly invoked set of assumptions.

Our estimate for Qr 4;4 D r x D 0:988 also points to a highly
persistent and very accurately estimated long-run risk factor. This
contrasts with the typical practice of simply fixing the long-run
persistence coefficient at some ``large'' value, as in, e.g., Bansal et al.
(2007a), and clearly highlights the advantages of the more struc-
tured GMM estimation approach and richer data sources applied
here. Meanwhile, even though our estimate for � dx D Qr 3;4 D

� dx
� Ad;x

D � 0:002 is ``correctly'' signed, the parameter is not signifi-

cantly different from zero, and as such offers only limited support
to the idea that the long-run risk factor xt contemporaneously im-
pacts cash flows � dt .

Interestingly, our use of more accurate volatility measures
results in a much more persistent consumption variance estimate
Qr 1;1 D r � D 0:64 compared to the estimates recently reported
in Campbell et al. (2013). Moreover, our estimates for Qr 1;1 D r � D

22 Note that the market price of dividend risk B4;3 D � 0:19 is imputed to by the
constraint Ad;d D � d

1� � d;1 � d
imposed in Eq. (18).
0:64 > Qr 2;2 D r q D 0:46 imply that the consumption variance � 2
t

is more persistent than the variance-of-variance qt , or economic
uncertainty, which is directly in line with the implicit assumptions
invoked in the calibrations reported in Bollerslev et al. (2009).

Turning to our estimates for the volatility dependence matrix QS,
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all of the individual parameters, except QS3;2, are again highly
statistically significant. This clearly underscores the idea that
multiple volatility factors are indeed needed to accurately describe
the dynamic dependencies observed in the data, and that the
standard long-run risk model with a single stochastic volatility
factor is misspecified. To more fully appreciate this and the
other implications of the estimates recall again the relationship
between QS and the ``structural'' S matrix for the latent state vector
in Eq. (19).

It follows from this relation that shocks to cash flow growth
� dt are adversely affected by shocks to the long-run risk compo-
nent xt , as sd;x / � QS3;4 D � 0:15.23 This is consistent with the
idea that companies tend to distribute more in dividends when
long-run growth opportunities are poor. The ``structural'' long-run
risk shock affects the two variance processes � 2

t and qt in oppo-
site directions. Good news about long-run consumption growth re-
duces the consumption variance, as s� ; x / � QS1;4 D � 0:08 < 0,

but increases economic uncertainty, as sq;x / � QS2;4 D 0:09 >
0. The first effect represents the well known ``leverage effect'',
whereby a negative growth shock is associated with higher volatil-
ity, and vice versa. The second effect, however, is more subtle. Since
qt directly affects the time-varying volatility of the long-run risk
component, a positive sq;x implies that when a positive zx;t shock
occurs, the volatility of next period's � x;t C1 will also be higher, and
vice versa. Intuitively, this could happen when good news in con-
sumption growth is accompanied by better investment opportuni-
ties, in turn resulting in higher economic uncertainty, possibly due
to over-investment. Interestingly, our estimates for QS also suggest
that sq;� / QS2;1 D � 0:29 < 0, implying that a positive ``struc-
tural'' shock to consumption volatility � 2

t reduces the uncertainty
of volatility qt . This effect is naturally interpreted as a new ``lever-
age effect'' between volatility and volatility-of-volatility. 24

Our identification and estimation of the ``structural'' model pa-
rameters rely crucially on the presence of time-varying conditional
heteroscedasticity in the � t C1 shocks. The GMM parameter esti-



T. Bollerslev et al. / Journal of Econometrics 187 (2015) 458–471 465
Volatility Shocks (zσ,t)

–2

0

2

4

6

8

Volatility–of–Volatility Shocks (zq,t)

–6

–4

–2

0

2

4

Dividend Shocks (zd,t)

90 95 00 05 10

–3

–2

–1

0

1

2

3

Long–Run Growth Shocks (zx,t)9095000510–4–3–2–10123

Fig. 2. Model implied structural shocks.
Table 2
‘‘Structural’’ factor GARCH estimation. The table reports the GMM estimation result
for the conditional variance parameters for the ‘‘structural’’ factor GARCH model
discussed in the main text. The column labeled ϖu gives the unconditional variance
of the reduced form shocks ut . Υ and Γ denote the ARCH and GARCH parameters,
respectively, for the ‘‘structural’’ shocks ϵ̃t . The estimates are based on monthly data
from February 1990 to November 2011, for a total of 262 observations.

ϵ̃t ϖu Γ Υ

ERVt 0.0011 (0.0002) 0.189 0.273 (0.075)
VRPt 0.0003 (0.0000) 0.758 (0.080) 0.239 (0.077)
∆dt 0.0006 (0.0001) 0 0.524 (0.100)
dt+1/pt 0.0016 (0.0002) 0.299 0.163 (0.082)

which corresponds to a p-value of 0.12 in the relevant asymptotic
chi-square distribution.26

In order to further gauge the quality of the fit afforded by the
model, Fig. 2 plots the time-series of ‘‘structural’’ shocks associated
with each of the four equations. The top two panels show the
volatility shocks zσ ,t and zq,t . Both of these shocks experienced
unprecedented large, albeit opposite signed, realizations during
the 2007�2009 ‘‘Great Recession’’. Interestingly, neither one of the
earlier 1990�1991 and 2001�2002 NBER-dated recessions were
accompanied by especially large ‘‘structural’’ volatility shocks. The
general time-series pattern of the equilibrium-based cash flow
shocks z∆d,t appear quite similar to that of the normalized cash
flow news in Campbell et al. (2013). Although not quite as dramatic
as for the two volatility shocks, the permanent growth shocks zx,t

26 By contrast, the two alternative specifications discussed in the supple-
mentary Appendix A, one closer to Drechsler and Yaron (2011) with Gt =

diag[σt ,
√
qt , σt ,

√
qt , σt ], and one closer to Branger and Vòlkert (2012) with Gt =

diag[σt , σt , σt ,
√
qt , σt ], result in GMM-based J-statistics equal to 26.31 and 37.02,

respectively, with corresponding p-values essentially zero.
also experienced their most extreme realizations during the ‘‘Great
Recession’’. This basic dynamic pattern in the equilibrium-based
growth shocks is again quite similar to that of the normalized
discount rate news shocks reported in Campbell et al. (2013).27

In lieu of these findings and generally supportive diagnostic
tests for the ‘‘structural’’ factor GARCH model, we turn next to
our main empirical investigations, showing how incorporating
the additional variance-related state variables in the equilibrium-
based model help shed new light on the return and dividend
growth predictability patterns inherent in the data.

4. Model implied return and cash flow predictability

Our predictability analysis is based on recasting the ‘‘structural’’
factor GARCH model in the form of an expanded VAR system,
along with the use of the standard Campbell�Shiller approximation
for expressing the return as a function of the observable state
variables.

4.1. VAR and predictability

The first order VAR for the state vector Xt = [ERVt , VRPt , ∆dt ,
dpt ] implied by the ‘‘structural’’ factor GARCH model in Eq. (20)
does not directly involve the return. However, by the standard
Campbell�Shiller approximation, the return may be conveniently
expressed as rt,t+1 = κd,0 − κd,1dpt+1 + dpt + ∆dt+1.28Combining

27 This is also consistent with the findings in Lettau and Ludvigson (2013), who
suggest that large negative permanent growth shocks might have adversely affected
housing wealth.
28 The accuracy of the Campbell�Shiller approximation has recently been
corroborated by Engsted et al. (2012). By definition κd,1 = exp(−E(dpt ))[1 +
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this equation for rt,t+1 with the VAR for Xt+1, it follows that

rt,t+1 = µr + (l1Φ + e4)Xt + l1Φ−1
0 ϵ̃t+1, (28)

where µr collects all of the relevant constant terms, l1 ≡ (0, 0,
1, −k1,d), and the selection vector e4 ≡ (0, 0, 0, 1). Iterating the
VAR for Xt forward, it is therefore possible to derive closed-form
expressions for the model-implied multi-period return rt,t+h =

rt,t+1 + · · · + rt+h−1,t+h regressions based on any explanatory
variable spanned by the Xt state vector.

In the analysis reported on below we will focus on the three key
predictor variables: the log dividend-price ratio dpt
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Table 3
Predictive Regressions based on the Dividend-Price Ratio. The table reports the slope coefficients in the return and cash flow predictability regressions,

1
h

h
i=1

rt,t+i = αr,dp + βr,dp(h) · dpt + ζt,t+h

1
h

h
i=1

∆dt,t+i = α∆d,dp + β∆d,dp(h) · dpt + ζt,t+h

implied by the parameter estimates for the ‘‘structural’’ factor GARCH model discussed in the main text, with asymptotic standard errors in parentheses. The table also
reports the slope coefficients implied by a two-variable reduced form homoskedastic VAR for the dividend growth rate and the dividend-price ratio, as in Cochrane (2008),
along with the results from simple univariate predictive regressions. The time horizon h runs from one to ten years in the first two panels, and from one to twelve months
in the bottom three panels. All of the results are based on monthly data from February 1990 to November 2011.

Years 1 2 3 4 5 6 7 8 9 10

Structural model implied
βr,dp(h) 0.0126 0.0114 0.0106 0.0098 0.0092 0.0086 0.0081 0.0077 0.0072 0.0068

(0.0099) (0.0085) (0.0074) (0.0065) (0.0057) (0.0050) (0.0045) (0.0039) (0.0035) (0.0031)

β∆d,dp(h) −0.0013 −0.0012 −0.0011 −0.0011 −0.0010 −0.0009 −0.0009 −0.0008 −0.0008 −0.0007
(0.0028) (0.0027) (0.0026) (0.0024) (0.0023) (0.0022) (0.0021) (0.0020) (0.0019) (0.0018)

Months 1 2 3 4 5 6 9 12

Structural model implied
βr,dp(h) 0.0166 0.0157 0.0150 0.0145 0.0141 0.0138 0.0131 0.0126

(0.0135) (0.0127) (0.0122) (0.0117) (0.0114) (0.0111) (0.0104) (0.0099)

β∆d,dp(h) −0.0022 −0.0017 −0.0016 −0.0015 −0.0015 −0.0014 −0.0014 −0.0013
(0.0023) (0.0027) (0.0028) (0.0029) (0.0029) (0.0029) (0.0029) (0.0028)

Univariate regression
βr,dp(h) 0.0112 0.0119 0.0121 0.0123 0.0129 0.0135 0.0153 0.0161

(0.0089) (0.0083) (0.0078) (0.0076) (0.0074) (0.0072) (0.0069) (0.0069)

β∆d,dp(h) −0.0029 −0.0011 −0.0004 −0.0001 −0.0000 0.0001 0.0002 0.0001
(0.0030) (0.0015) (0.0012) (0.0008) (0.0007) (0.0006) (0.0005) (0.0004)
shows that the only ‘‘structural’’ shock that enters the return and
VRP equations with the opposite sign is ϵ̃q,t . Indeed, excluding the
impact of the economic uncertainty shock from both equations
changes the monthly conditional correlation, or ‘‘leverage effect’’,
from a negative −0.09 to a positive 0.66, again reinforcing the
importance of jointly modeling all of the elements in the Xt state
vector.

4.3. Model-implied predictability relations

The VAR-based formula for the slope coefficients presented
above allows for a direct assessment of the statistical significance
of the different predictor variables across different forecast
horizons. The formula also allows us to directly assess the
enhanced efficiency afforded by the ‘‘structural’’ factor GARCH
model compared to the reduced form VAR and simple univariate
regression procedures traditionally used in the literature.

To begin, the top panel in Table 3 reports the implied slope
coefficients for forecasting returns and cash flows by the dividend-
price ratio dpt over long 1- to 10-year horizons, as previously
analyzed in the literature. Although the patterns in the estimated
coefficients are generally in line with the estimates reported in the
existing literature based on longer calendar time spans of data,
taken as a whole there is little evidence for any predictability
over these long multi-year horizons in the data analyzed here.31

The results for the shorter within year ‘‘structural’’ and simply
unconstrained univariate regressions reported in the lower panel
of the table tell a similar story.

31 We also experimented with a traditional two-variable homoskedastic VAR for
the dividend-price ratio and the dividend growth rate, as in Cochrane (2008),
resulting in similar coefficient estimates, but typically larger standard errors, thus
highlighting the more accurate inference afforded by explicitly incorporating the
equilibrium-based restrictions and the strong heteroskedasticity inherent in the
data. Further details concerning these results are available upon request.
The lack of predictability for the long multi-year horizons,
is, of course, not too surprising. With only slightly more than
twenty years worth of monthly observations any suggestions
about statistically significant long-run predictability should be
taken with a grain of salt. For the remainder of this section, we will
consequently restrict our attention to within-year horizons only.32

Turning to our key empirical findings pertaining to the ‘‘new’’
variance related forecasting variables, Fig. 3 shows the regression
slope coefficients for the variance risk premium VRPt implied by
the ‘‘structural’’ factor GARCH model (indicated by dots) along
with the corresponding 95% confidence intervals (indicated by
the shaded area). For comparison purposes, we also include the
estimated slope coefficients from simple univariate predictive
regressions based on the variance risk premium (indicated by the
stars) along with their 95% confidence intervals (indicated by the
dashed lines). Focusing on the top panel for the returns, both
procedures result in significant estimates for up to eight months. It
is noteworthy that even though the model-implied point estimates
are systematically lower than the unrestricted OLS estimates, they
are also less erratic, and the confidence intervals much smaller.
Indeed, looking at the numbers in Table 4, the t-statistics for testing
the null hypothesis of no return predictability are uniformly larger
for the ‘‘structural’’ approach.

This discrepancy in the results across the two approaches is
even stronger for the cash flow predictability regressions reported
in the bottom panel in Fig. 3. Whereas the estimated slope
coefficients from the univariate regressions are all insignificant,
the t-statistics associated with the VAR-based model-implied
coefficients are all negative and exceed conventional significance
levels for up to six months. Hence, not only are higher variance

32 The univariate return regressions reported in Bollerslev et al. (2009)
and Drechsler and Yaron (2011) that in part motivate our analysis also suggest
that the return predictability inherent in the variance risk premium is confined to
relatively short horizons.
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Fig. 3. Predictive regressions based on the variance risk premium.
Table 4
Predictive Regressions based on the Variance Risk Premium. The table reports the slope coefficients in the return and cash flow predictability regressions,

1
h

h
i=1

rt,t+i = αr,VRP + βr,VRP(h) · VRPt + ζt,t+h

1
h

h
i=1

∆dt,t+i = α∆d,VRP + β∆d,VRP(h) · VRPt + ζt,t+h

implied by the parameter estimates for the ‘‘structural’’ factor GARCH model discussed in the main text, with asymptotic standard errors in parentheses. The table also
reports the slope coefficients from simple univariate predictive regressions. The time horizon h runs from one to twelve months. All of the results are based on monthly data
from February 1990 to November 2011.

Months 1 2 3 4 5 6 9 12

Structural model implied
βr,VRP (h) 0.5228 0.3571 0.2564 0.1929 0.1514 0.1231 0.0772 0.0557

(0.1031) (0.0566) (0.0396) (0.0330) (0.0292) (0.0263) (0.0200) (0.0161)

β∆d,VRP (h) −0.0393 −0.0147 −0.0103 −0.0074 −0.0058 −0.0047 −0.0029 −0.0020
(0.0154) (0.0057) (0.0041) (0.0031) (0.0026) (0.0023) (0.0018) (0.0016)

Univariate regression
βr,VRP (h) 0.5454 0.4060 0.3620 0.3640 0.3494 0.2683 0.1335 0.0911

(0.2194) (0.1450) (0.1090) (0.1321) (0.1400) (0.1031) (0.0773) (0.0540)

β∆d,VRP (h) −0.1215 0.0035 0.0280 0.0576 0.0183 0.0232 −0.0066 −0.0012
(0.2420) (0.1094) (0.0483) (0.0640) (0.0465) (0.0309) (0.0237) (0.0130)
risk premia positively related to future returns, as previously
documented in the literature, they also predict lower near-term
future cash flows.33 This, of course, contrasts with the view

33 This is also related to the observation by Bloom (2009) that an increase in
economic uncertainty causes firms to temporarily reduce their investment and
hiring, in turn resulting in a short-term productivity drop.
commonly expressed in the literature that dividend growth rates
are largely unpredictable over short within-year horizons.

Of course, the much-studied classical risk-return trade-off is
not based on the variance risk premium, but rather the return
variation itself. In spite of the intuitively appealing idea behind
such a relationship, empirical attempts at establishing a significant
risk-return tradeoff have largely proven futile; see, e.g., the
discussion in Bollerslev and Zhou (2006) and Guo and Whitelaw
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Fig. 4. Predictive regressions based on the expected variation.
(2006), and the many other references therein. The result for
the univariate return regressions based on ERVt reported in the
top panel in Fig. 4 and Table 5 underscore the elusive nature
of a simple linear relationship between the expected returns
and the expected variation in the data analyzed here. None of
the regression coefficients are significant, and most have the
‘‘wrong’’ sign. By contrast, the VAR-based estimates implied by the
‘‘structural’’ model are all positive and marginally significant for
return horizons in excess of 4 months.34

The difference in the quality of the inference afforded by
standard univariate regression-based procedures traditionally em-
ployed in the literature and the ‘‘structural’’ approach advocated
here is even more dramatic for the cash flow predictions reported
in the bottom panel in Fig. 4. While the simple univariate regres-
sions suggest that the 1�6 months dividend growth rate is un-
predictable, the regression coefficients implied by the ‘‘structural’’
model are all highly significant. Interestingly, whereas an increase
in VRPt predicts lower future cash flows, and increase in ERVt is
associated with significantly higher future cash flows. Again, this
strong empirical evidence for short-run within-year cash flow pre-
dictability stands in sharp contrast to the results reported in the
existing literature based on other more traditional predictor vari-
ables and valuation ratios.

34 The use of IVt = VRPt+ERVt results in qualitatively similar patterns, but slightly
more significant coefficient estimates, compared to the ones reported for ERVt , thus
confirming earlier empirical findings in Bollerslev and Zhou (2006) and Guo and
Whitelaw (2006) of a stronger risk-return trade-off when using implied as opposed
to realized variation. Still, none of the univariate return regressions based on IVt
result in any significant predictability. Further details of these results are available
upon request.
At a more general level, the results for the two different ap-
proaches reported in Tables 3�5 and Figs. 3�4 may also be seen
as providing indirect support for the equilibrium-based ‘‘struc-
tural’’ model, in that the more accurate model-implied predic-
tive relations systematically fall within the wider standard error
bands associated with the unrestricted regressions. This, of course,
would not necessarily be the case if the assumptions underlying
the ‘‘structural’’ model were violated.

4.4. Further discussion and interpretation

The contrast between the long-run predictability inherent
in the dividend-price ratio, and the variance variables ability
to predict both return and cash flow over shorter within-year
horizons is intimately related to our equilibrium-based long-run
risk model, and the way in which the fundamental risk factors
affect the state variables.

In particular, while the dividend-price ratio dpt loads on the
long-run risk factor xt and both of the volatility factors σ 2

t and
qt , the expected variation ERVt depends only on the two volatility
factors σ 2

t and qt , and the variance risk premiumVRPt is exclusively
determined by the volatility-of-volatility factor qt . Consistent with
earlier less formal model calibrations reported in the literature, our
GMM-based estimates imply that the long-run risk factor is highly
persistent with AR(1) coefficient equal to ρx = 0.988, while the
consumption volatility factor is moderately persistent with AR(1)
coefficient equal to ρσ = 0.64, and the consumption volatility-
of-volatility factor is quickly mean-revering with AR(1) coefficient
equal to ρq = 0.46.

In light of these estimates for the underlying systematic risk
factors, it is therefore not surprising that the ‘‘structural’’ model
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Table 5
Predictive regressions based on the expected variation. The table reports the slope coefficients in the return and cash flow predictability regressions,

1
h

h
i=1

rt,t+i = αr,ERV + βr,ERV (h) · ERVt + ζt,t+h

1
h

h
i=1

∆dt,t+i = α∆d,ERV + β∆d,ERV (h) · ERVt + ζt,t+h

implied by the parameter estimates for the ‘‘structural’’ factor GARCH model discussed in the main text, with asymptotic standard errors in parentheses. The table also
reports the slope coefficients from simple univariate predictive regressions. The time horizon h runs from one to twelve months. All of the results are based on monthly data
from February 1990 to November 2011.

Months 1 2 3 4 5 6 9 12

Structural model implied
βr,ERV (h) 0.0251 0.0387 0.0426 0.0422 0.0398 0.0368 0.0283 0.0223

(0.0417) (0.0321) (0.0264) (0.0225) (0.0195) (0.0171) (0.0124) (0.0096)
β∆d,ERV (h) 0.0396 0.0152 0.0107 0.0079 0.0063 0.0052 0.0034 0.0025

(0.0081) (0.0029) (0.0021) (0.0016) (0.0013) (0.0011) (0.0008) (0.0006)
Univariate regression
βr,ERV (h) −0.1044 −0.0477 −0.0546 −0.0491 −0.0274 −0.0003 0.0185 0.0137

(0.1273) (0.1080) (0.0957) (0.0911) (0.0742) (0.0531) (0.0307) (0.0242)
β∆d,ERV (h) 0.1173 0.0079 −0.0004 0.0073 0.0113 0.0152 0.0139 0.0117

(0.1051) (0.0404) (0.0243) (0.0239) (0.0132) (0.0082) (0.0059) (0.0035)
implied return predictability regressions based on VRPt , which
depends solely on qt , result in the most significant coefficients over
relatively short 1�6 months horizon. Meanwhile, the regressions
based on dpt , which loads heavily on xt , should show the greatest
explanatory power over longer multi-year horizons, which, of
course is difficult to detect statistically with the limited time span
of data analyzed here. Also, whereas the variance risk premium is
most significant over horizons less than 6 months, the expected
variation ERVt displays the most significant predictability over
6�12 months horizons, as the more persistent σ 2

t process ‘‘shifts’’
the predictable forward.

The documented differences in the degree of cash flow pre-
dictability are most easily understood in terms of the correlations
among the ‘‘structural’’ shocks. From the model estimates the cash
flow shock is more strongly negatively correlated with the contem-
poraneous variance shock (sd,σ ∝ S̃3,1 = −0.36), than it is with
the uncertainty shock (sd,q ∝ S̃3,2 = −0.09) or the long-run risk
shock (sd,x ∝ −S̃3,4 = −0.15). Since the expected variation loads
more heavily on σ 2

t than qt , while the dividend-price ratio and the
variance risk premium are mostly determined by xt and qt , respec-
tively, ERVt will be more strongly negatively related to ∆dt than
either dpt or VRPt . Because of the negative autocorrelation in ∆dt
(ρd = −0.23 < 0), this in turn translates into the strongest posi-
tive short-run cash flow predictability results for the ERVt predictor
variable implied by the ‘‘structural’’ VAR.

5. Conclusion

We examine the joint predictability of return and dividend
growth rates within a present value framework, explicitly
imposing the economic equilibrium-based constraints from a long-
run risk model with time-varying consumption volatility and
volatility-of-volatility risk. The model clearly differentiate the
long-run predictability channels associated with the dividend-
price ratio from the economic mechanisms responsible for the
short-run predictability inherent in the variance risk premium and
the expected return variation.

Consistent with Bansal and Yaron (2004), our GMM-based es-
timates of the ‘‘structural’’ factor GARCH model point to a highly
persistent latent long-run risk factor. Our estimates also corrob-
orate the calibrations in Bollerslev et al. (2009), and the notion
that consumption volatility is more persistent than consumption
volatility-of-volatility. In addition, the ‘‘structural’’ shocks identi-
fied within the model reveal that cash flow respond negatively
to contemporaneous long-run growth shocks, while consumption
volatility decreases with shocks to the long-run growth factor, and
volatility uncertainty increases with long-run growth shocks. A
new ‘‘leverage effect’’ whereby shocks to consumption volatility is
negatively related to volatility-of-volatility also emerges from our
‘‘structural’’ estimation.

By allowing for much sharper and accurate inference than
the procedures traditionally employed in the literature, the VAR
implied by the ‘‘structural’’ model also provides striking new
evidence on the return and cash flow predictability inherent in the
data. Specifically, we find that the variance risk premium, and to a
lesser extend the expected return variation, significantly predicts
short-run within-year returns. On the other hand, the expected
return variation, and to a lessor extend the variance risk premium,
strongly predicts short-run within-year dividend growth rates.
This latter finding stands in sharp contrast to the view expressed
by a number of studies in the literature that cash flows are largely
unpredictable.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2015.02.031.
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