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Abstract

We propose a two-step machine learning algorithm | the Supervised Adaptive Group
LASSO (SAGLasso) method | that is suitable for constructing parsimonious return pre-
dictors from a large set of macro variables. We apply this method to government bonds
and a set of 917 macro variables and construct a new, transparent, and easy-to-interpret
macro variable with signi cant out-of-sample predictive power for excess bond returns.
This new macro factor, termed the SAGLasso factor, is a linear combination of merely
30 selected macro variables out of 917. Furthermore, it can be decomposed into three
sub-level factors: a novel \housing" factor, an \employment" factor, and an \in ation"
factor. Importantly, the predictive power of the SAGLasso factor is robust to bond
yields; namely, the SAGLasso factor is not spanned by bond yields. Moreover, we show
that the unspanned variation of the SAGLasso factor cannot be attributed to yield mea-
surement error or macro measurement error. The SAGLasso factor therefore provides a
potential resolution to the spanning controversy in the macro- nance literature.
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1 Introduction

A growing literature has documented that excess returns of U.S. Treasury bonds are predictable.
For instance, the predictors found thus far include forward rates (Cochrane and Piazzesi 2005)
and yield-based variables constructed by using Itering (Du ee 2011), as well as macroeconomic
variables (e.g., Cooper and Priestley 2009; Ludvigson and Ng 2009). One debate in this literature
is whether macroeconomic fundamentals have any such predictive power conditionally over bond
yields. Among other things, this debate has important implications for macro- nance term structure
models (MTSMs; see, e.g., Joslin, Priebsch, and Singleton 2014 (hereafter JPS)).

In this paper, we construct a new macro factor with strong and robust predictive power for bond
risk premia using a two-step machine learning algorithm, termed the Supervised Adaptive Group
LASSO (SAGLasso) method. We obtain the new macro variable (referred to as the SAGLasso
factor) by applying the SAGLasso algorithm to a panel of 131 macro variables (along with six
of their lags) | a total of 917 (131 x 7) macro variables ] that are adjusted for data revisions and
publication lags. In addition to its predictive power, the SAGLasso factor has two other noteworthy
features. One is that the factor is parsimonious, transparent, and easy to interpret. The SAGLasso
factor is a linear combination of merely 30 selected variables out of 917. Furthermore, it can be
decomposed into three sub-level factors: a novel \housing" factor, an \employment" factor, and an
\in ation" factor ] which consist of 13, 11, and 6 macro variables, respectively. The other feature
is that the SAGLasso factor is unspanned. Intuitively, this means that the SAGLasso factor is
not subsumed (spanned) by yield factors in either predictive regressions or MTSMs. As such,
the SAGLasso factor can potentially help resolve the spanning controversy in the macro- nance
literature ] the debate on whether macro-based return predictors are spanned or not.

We begin our analysis by describing the two-step SAGLasso method, followed by its imple-

mentation using the panel of 131 macro series. We construct eight sub-level factors ] such as the

1See also Fama and Bliss (1987), Stambaugh (1988), and Campbell and Shiller (1991).



\housing," \employment,” and \in ation" factors | in the rst step and then the SAGLasso factor
in the second step of the procedure. Note that we control for contemporaneous yields in both steps
to minimize the information overlap between the SAGLasso factor and the yield curve.

Next, we examine the conditional predictive power of the SAGLasso factor for bond risk premia
by testing two hypotheses. The rst one, Spanning Hypothesis I, states that macro variables have no
incremental predictive power over the current yield curve, the rst three principal components (PCs)
of yields. The second one, Spanning Hypothesis 11 | a stronger version of the rst hypothesis ] posits
that macro variables have no incremental predictive power over the Itration generated by the yield
curve, proxied by the rst ve yield PCs Itered from a dynamic term structure model. Our results

from both in-sample and out-of-sample tests strongly reject the two spanning hypotheses when the



spannned/explained by the current yield curve. Importantly, this result is robust to measurement
errors in yields or in the SAGLasso macro variable itself. Taken together, these ndings suggest
that the SAGLasso factor provides a potential resolution to the spanning controversy.

To summarize, this study contributes to the macro nance literature in three dimensions. First,
it is among the rst to introduce a machine learning algorithm suitable for constructing parsi-
monious return predictors from a large set of macro variables. Second, using this algorithm we
construct a new, easy-to-interpret macro variable that has strong out-of-sample conditional predic-
tive power for bond risk premia. Moreover, unlike commonly used macro variables in the literature,
the SAGLasso factor is unspanned and has tiny measurement error. Third, we show that, due to its
unique features, the SAGLasso factor can address those concerns raised in Bauer and Rudebusch
(2016; hereafter BR), Bauer and Hamilton (2018; hereafter BH), and Ghysels, Horan, and Moench
(2018) in a uni ed manner and thus can potentially help resolve the spanning controversy.

While this paper focuses on linear models of predictors, two related studies use nonlinear ma-
chine learning models to construct bond return predictors (but do not address the spanning con-
troversy). Huang et al. (2016) nd that the macro series selected by SAGLasso is robust to various
nonlinear models they consider. Bianchi, Buchner, and Tamoni (2021) study bond risk premia using
tree-based algorithms as well as neural networks and nd that their superb statistical performance
translates into large economic gains. While these highly nonlinear methods can accommodate more
complex data, the SAGLasso method can lead to easier-to-interpret return predictors.?

The remainder of the paper is organized as follows. Section 2 states Spanning Hypotheses | & 11,
followed by Section 3 on the data we use. Section 4 presents the SAGLasso algorithm, constructs
the SAGLasso factor, and examines its properties. Section 5 revisits the spanning controversy.

Section 6 concludes. Appendix A lists some notation and terms frequently used in the paper.

3Several other studies focus on the application of machine learning in the other nance markets. Freyberger et al.
(2020) use Group Lasso to study the impact of characteristics on expected stock returns. Gu et al. (2020) compare
Group Lasso with other machine learning methods in the context of stock return prediction. Bali et al. (2021) and
He et al. (2021) apply nonlinear machine learning models to inferring corporate bond risk premiums.



2 Hypotheses on the Predictive Power of Macro Variables
2.1 Basic Setup

We use continuously compounded annual log returns on an n-year zero-coupon Treasury bond in

excess of the annualized yield on a one-year zero-coupon Treasury bond. Thatis, for¢t=1,--- , T,
excess returns reyrny = o =y = nyl? — (n — 1ySae D — 48P, where 837, is the

one-year log holding-period return on an n-year bond purchased at the end of month ¢ and sold at



fraction of the variation in the term structure (Litterman and Scheinkman 1991). If the current
yield curve is supposed to contain almost all the information useful for determining term premia,

we arrive at Spanning Hypothesis | (a hypothesis formulated and tested by JPS and BH):
H§' 1in Eq. (1), if Z¢ = PC$ 44, then B =0,

where PC9 5 = (PC9,PC$,PC$), the vector of the rst three PCs of the observed yield curve.
Interestingly, Du ee (2011) nds that the fourth and fth PCs are also informative about
predicting bond returns. These factors need to be estimated using Itering techniques based on
both current and historical yields, however, as the e ects of such factors on cross-sectional yields
are too small to dominate measurement error in observed yields. Nonetheless, a natural question is
whether macro variables contain information about future bond returns that is not captured by the
Itration generated by the yield curve process. If the \true" yield curve is Markov, as is commonly

assumed in term structuring modeling, this question leads to Spanning Hypothesis II:
H$? :in Eq. (1), if Z =PCy 54, then g =0,

where PC1 5 = (PC4,...,PCs), the vector of the rst ve PCs of the noise-uncontaminated yield
curve. Given the predictive power of Itered PC,4 s, H3? provides a stronger test of the conditional
predictive power of F; than does H§'.# We also consider an alternative version of H5? where Z; is
the spanned \cycle™ factor of Cieslak and Povala (2015) in Internet Appendix IA.F.

Small-sample distortions may also take place in tests of H§! and H3?. BH demonstrate that
estimates of standard errors in the ¢-test of S = 0 can be biased because PCs (Z;) are typically
persistent and autoregressive with innovation terms that are possibly correlated with e¢+12. They
propose a bootstrap procedure to account for the size distortion and conclude that much of extant
\evidence against the spanning hypothesis is in fact spurious.' Besides the statistical inference about
B in Eq. (1), BH also study the nite-sample distribution of the increase in R? when F; is added

to the regression. They show that serially correlated et+12 due to overlapping observations could

4The use of PC4 s rather than PCY§ 5 in H§? is because the latter’s predictive power is weaker (see Internet
Appendix 1A.A). The version of H5? based on PCY 5 is examined in JPS, BR, and BH.



substantially in ate the incremental R? in small samples, even if F; provides no help in predicting
bond returns. We test H§! and H§? by conducting an asymptotic inference (Sections 4.4.2) as well

as an MTSM-based nite-sample inference (Section 5.2).

3 Data

We use monthly data on bond returns and macroeconomic variables over the period January 1964
to December 2014 in our analysis. The start of our sample coincides with that of many other studies

that also use the Fama-Bliss yield data set (e.g., Cochrane and Piazzesi 2005; Ludvigson and Ng



our real-time macro data is the Archival Federal Reserve Economic Data (ALFRED) database at
the Federal Reserve Bank of St. Louis, which is a collection of vintage versions of U.S. economic
data and contains more monthly sampled series than does the Philadelphia Fed’s Real-Time Data
Set. Appendix B includes the list of the 131 series in Table A.1 and describes how our macro data
are compiled. The 131 series are organized in a hierarchical manner. Such a cluster structure of
macro variables turns out to be useful to model selection. To that end, following Ludvigson and
Ng (2011), we group the 131 series into eight categories: i) output (17 series); ii) labor market (32
series); iii) housing sector (10 series); iv) orders and inventories (14 series); v) money and credit
(11 series); vi) bond and FX ] interest rates or nancial (22 series); vii) prices or price indices (21
series); and viii) stock market (4 series). Column 2 of Table A.1 reports the group ID of each series.

Section 4.2 shows that some of the eight groups have stronger predictive power than the others.

4 Adaptive-Lasso-Based Model Selection

In this section we rst describe the supervised adaptive group lasso algorithm. We next use the
algorithm to construct a macro factor with low correlations to the yield curve. We then examine
the predictive power of this new macro factor for future bond returns as well as economic gains of

such bond return predictability.

4.1 Supervised Adaptive Group Lasso

For a T x 1 response vector y, consider the following penalized least squares (PLS) function:

N
FPE@) = lly = XBI2+ 2>



lasso estimate is given by 31250 = argmin fPLS(B).

If \ is zero, then B'25s° equals the OLS estimate, 3°'S, provided that the OLS estimation is
feasible. Recall that none of 4°'S’s components are zero. However, as X increases, some components
of A'asso will shrink to zero, and as a result, the corresponding \useless" explanatory variables will
be dropped and the resulting regression model will become more parsimonious.

Lasso has several advantages over the OLS. First, by construction, lasso reduces the variance of
the predicted value and thus improves the overall (out-of-sample) forecasting performance. Second,
the OLS is known to have poor nite sample properties when the dimension of parameters to be
estimated is comparable with the number of observations. For instance, in our case there are 131
macro series along with six of their lags | 917 (131 x 7) macro variables in total ] with only 600
observations for each series. Lasso is developed to handle such problems. Third, lasso leads to a
much more parsimonious and easier-to-interpret model than the OLS. In fact, the parsimonious or
sparse feature of lasso distinguishes it from ridge regression, another shrinkage method.

Despite lasso’s popularity, one limitation of the method is that lasso estimates can be biased.
Zou (2006) shows that this problem can be xed by using Adaptive Lasso, which minimizes the

following objective function:

N
ly = XBI1%+ > xilBil, ®)
i=1

where di erent tuning parameters {\;} are introduced to penalize di erent ;s separately.

We construct a macro-based return predictor in two steps. In the rst step, we utilize the
cluster structure of our macroeconomic panel and consider variable selection separately within each
of the eight groups/clusters formed in Section 3; that is, we screen out less important or irrelevant
individual economic series and identify informative ones within each cluster using adaptive lasso.
This is done for three reasons. First, even variables within the same group may represent certain
guantitative measurements of di erent economic sectors. For instance, the Industrial Production

(IP) Index of Consumer Goods and the IP Index of Materials (in group i) might be connected



to bond risk premia in a di erent manner. Second, we want to select macroeconomic measures
that are jointly signi cantly associated with bond risk premia. Third, adaptive lasso selects only a
small number of macro variables within each cluster and thus allows us to construct parsimonious
models, including easy-to-interpret group macro factors if necessary.

In the second step, we consider all the groups together, each of which now consists of only those
macro variables selected in step one, and then conduct variable selection at the group level. We
implement this idea using the Group Lasso of Yuan and Lin (2006) to deal with situations in which
covariates are assumed to be clustered in groups (see Appendix C). That is, we select important
clusters using group lasso, thereby identifying in uential economic sectors in addition to individual
variables selected in the rst step.’

We refer to this two-step procedure as the supervised adaptive group lasso (SAGLasso) algo-
rithm.8 Its key feature is to consider penalized time-series selection at both the within-cluster level
and the cluster level. We construct bond return predictors by applying SAGLasso to a large set
of macro series in this study. SAGLasso should also be useful in similar big data applications in

nance and economics.

4.2 A Macro-Based Return-Forecasting Factor

This subsection implements the two-step SAGLasso procedure using the average excess return
(the bond market return), arzye+12 = ﬁ POHE mgalz, as the dependent variable, where ny
equals 5 (10) when the full (post-1984) sample is used.

First, we perform model selection in each of the eight groups of macro series separately, using

only macro variables within the same group along with their six lagged values. To minimize the

“Using high-dimension model selection (e.g., Huang, Shi, and Zhong 2015), Huang, Li, Ni, and Shi (2016) nd that
the variables selected under the SAGLasso procedure are robust to a variety of nonlinear models. Bianchi, Buchner,
and Tamoni (2021) also emphasize that it is important to exploit the cluster structure of the macroeconomic panel
and do selection within groups and across groups. As such, di erent machine learning methods seemingly can capture
the \common" cluster structure of the same macro data, at least for the purpose of bond return predictions.

8In statistical learning, a problem is considered to be supervised if the goal is to predict the value of an outcome
measure based on a variety of input measures. See Appendix C for more details of the SAGLasso procedure.



information overlap with respect to yield curve factors, we include the rst three yield PCs in our
variable selection but do not penalize the associated coe cients. Put di erently, in the regres-
sion framework of Eq. (1), Z; is PCY 3 but 5z are not penalized; F; includes contemporaneous
and lagged macro variables in a given group and Sg are subject to shrinkage. Therefore, at the

intragroup level of group j, we minimize the following objective function:

7Nj
hii hii |2 i | ohli
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where )\{ is the tuning parameter; IV denotes the number of economic series contained in group j;
ﬁ,rllj'l is the i-th component of ',1:1; ; and the superscript \(1)" emphasizes that these beta coe cients
are obtained in the rst step of the SAGLasso procedure.

This rst step allows us to screen out a large portion of candidate predictors within each group.®
In total, only 39 out of 131 series remain and have non-zero coe cients on their contemporaneous
and/or lagged values after the adaptive lasso is applied; the number of the selected macro variables
is only 58 out of 917 (131 x 7). Let )?jhli,j =1,...,viii, denote the set of macro variables, in group
4, that survive from the rst stage.

In the second step, we select those relevant )A(Jhli using group lasso. Yield PCs are included as
control variables as before. The results from the group lasso show that the coe cients of groups i,
iv, v, vi, and viii are shrunk to exactly zero; particularly, group vi (bond and FX) is not selected
as a result of controlling for yield factors. For each of the three selected groups | labor market

(group i), housing (group iii), and price indices (group vii) ] the group lasso solution obtained

from Eq. (19) in Appendix C yields its corresponding group macro factor:
G=X"E", =i, vii, ()

Ah2i

where j denotes the index of group j whose beta coe cient in step two, ﬁj , IS not zero. For ease

of reference, we relabel {g;} as {gn; » = 1,2,3}. They each have a clear economic interpretation by

®For instance, consider the largest group, the \labor market,” that originally contains 32 series and thus 32 x 7
(=224) variables. Column 7 of Table A.1l indicates that only ve series (out of 32), #41, #44, #46, #48, and #49,
are selected and that only 11 out of the original 224 variables are selected, including lag-5 and lag-6 of #41; #44
along with its lag-1, lag-2, and lag-3; #46 along with its lag-2; #49 along with its lag-2; and #49 itself.

10



construction and represent the employment, housing, and in ation factors, respectively.
Unlike in ation and employment, which are commonly incorporated in MTSMs and are well
motivated by certain equilibrium term structure models (e.g., Wachter 2006), the housing sector

has received little attention in the term structure literature. Given that g



single aggregate macro predictor using the aforementioned three group factors:

R 3

G=> 5n (5)
We refer to this predictor as the SAGLasso (single) macro factor hereafter. Note that this factor is

a linear combination of only 30 macro variables belonging to merely 19 di erent series, yet it has

strong predictive power for bond risk premia as shown below.

4.3 A Recursively Constructed SAGLasso Factor

The SAGLasso factor constructed in Section 4.2 is based on the full sample and is an uncondi-
tional/static factor. Below we construct a dynamic SAGLasso factor recursively. To avoid forward-
looking bias, we estimate everything using only the information available at the time of the forecast;
namely, we recursively re-estimate both factors and parameters when the new information becomes
available. We denote a recursively constructed factor by a tilde (e.g., é) to di erentiate it from its
unconditional counterpart, denoted by a hat (e.g., @).

Suppose we want to construct G at month ¢ based on observations from ¢ — R to ¢ — 1 and use
the predictor to help forecast one-step-ahead annual excess bond returns, where R > 1 denotes the
number of months included in the training period. Namely, in month ¢ = R we have the following
information set of monthly observations available: Fr = {Xj, {mﬁ;’;)ﬂz, 2<n<5}t=1,...,R}.

To examine the importance of macro variables over time, we focus on rolling-window estima-
tions.1% That is, we construct G at, say, t+1 using observations from ¢-R+1 to ¢t. We use R = 240
(a 20-year training period) in this exercise. Figure 3 depicts the importance of individual macro
variables over time. From the rolling-window prediction at time ¢, we extract coe cients of stan-

dardized macro variable £ and their lagged values Sy .1(1 < k£ < 131,0 < [ < 6), and map their

10gge, e.g., Lewellen (2015) who uses a 10-year rolling window to form OLS-based forecasts of individual stock
returns and nds that the importance of many characteristics diminishes over time. The procedure using an expanding
window to construct G has higher stability than that using the rolling window: g1,g> and gz are the only groups
selected. At the individual level, variables #42 (belonging to \labor market) and #053 (belonging to \housing
sector™) are the only new variables selected in certain months (and not included in the unconditional G factor). The
predictive power of G with the expanding window is closely comparable to that with the rolling-window.

12



norm />, B,f;,;t to the color gradients displayed on the right side of the gure. At the group
level, the selection results are fairly stable over time: The labor, housing, and in ation groups
are selected in most months. The only exception is the 2002{2005 period, during which macro
variables in housing and in ation groups diminished in importance and a couple of variables on
industrial production are selected instead.!* At the individual level, the selected macro series are
consistent with the results in Figure 1. Within the labor market group, nonfarm payrolls in the
manufacturing and nancial sectors play crucial roles in bond return predictions. In the in ation

group, the commodity price index appears the most prominent determinant of bond risk premiums.

4.4 Predictive Power of the SAGLasso Factor

4.4.1 In-Sample Evidence

Figure 2 plots the SAGLasso factor (in blue) and excess returns on the ve-year bond (in orange) in
the full sample period, where shaded areas indicate the periods designated by the National Bureau
of Economic Research (NBER) as recession periods. As expected, G captures the countercyclic
component in risk premia and leads movements in the realized bond returns. Indeed G generally
starts rising at the early stage of economic downturns and peaks during recessions; accordingly,
excess bond returns follow and tend to peak toward the end of (or even after) recessions.

Panel A of Table 1 presents results on the in-sample predictive power of G, for 2-, 3-, 4-, and
5-year bonds, over the full sample. Test statistics are reported for two di erent standard errors:
Hansen and Hodrick (1980) GMM (in parentheses) and Newey and West (1987) (in brackets).!?
Columns (1){(4) show that G alone has signi cant predictive power for excess returns, with the R?

ranging from 0.35 for the 2-year bond to 0.39 for the 5-year one. Columns (5){(20) indicate that the

11Given that the housing market boom after the early 2000s recession makes the share of housing consumption
less of a concern, it is unsurprising that variables in the housing sector become less important in this period. By the
same logic, the decline in the importance of in ation indices can be attributable to the stable in ation uncertainty
in 2000s (e.g., Wright 2011).

210 an earlier version, we also report the ¢-statistics with Hodrick (1992) 1B covariance estimator, which is
constructed using the approximate method of Wei and Wright (2013). The results for G are qualitatively similar,
but other return predictors tend to lose their signi cance with the Hodrick standard errors.

13



signi cance of G is robust to each of the following four factors: (a) a modi ed LNO9 factor (fJ\Vm),
(b) the Cochrane and Piazzesi (2005) forward-rate factor (CP), the Du ee (2011) hidden factor
(ﬁ), and the convergence gap ((/75) de ned by Berardi et al. (2021).*® The G factor, however, does
not completely subsume any of these four factors. The main reason is that whereas Gisa pure
macro factor by construction, LN includes Treasury and FX variables (group vi), CG exploits
information in the Federal Funds rate market, and both CP and H are purely yield-curve-based
factors. For example, G does not subsume CG for the 2-year bond in the bivariate regression.
This result is intuitive given that by construction, CG is expected to be most informative about
short-term bond premiums while G is trained on the aggregate bond market returns rather than a
speci c-maturity bond. As another example, if yield PCs are not controlled for in the second step
of the construction of G, then the resultant G subsumes IN" (Huang and Shi 2010).

Panel B reports the results for 2-, 5-, 7-, and 10-year bonds for the post-1984 subsample. While
the results on G are generally similar to their counterparts in panel A, the predictive power of the
other return predictors all becomes weaker except for CG. For instance, G now subsumes IN"
under the HH correction, but CG has increased values of both the ¢-statistics and incremental Rs.

In summary, Table 1 shows that G has both signi cant unconditional and conditional predictive
power for bond risk premia. Additionally, G subsumes other macro-based predictors post-1984. In
Internet Appendix IA.B, we also conduct in-sample spanning tests and nd that both H§' and

H§? are overwhelming rejected.

4.4.2 Out-of-Sample Accuracy

We next examine the out-of-sample performance of the SAGLasso factor, focusing on its incremental

power above and beyond yield-curve factors.

3In an untabulated analysis, we also consider the output gap factor (gap) of Cooper and Priestley (2009); the
new-order factor (NOS) of Jones and Tuzel (2013); the Cieslak and Povala (2015) \cycle" factor based on yield
curves and in ation; and a realized jump-mean factor constructed by Wright and Zhou (2009) (the latter two for
the post-1984 sample only). We nd that G subsumes gap and NOS and is not driven out by the other two factors.
Chernov and Mueller (2012) uncover a hidden factor that captures in ation expectations as well as bond risk premia;
however, this \survey" factor is present only in models estimated with survey-based information.

14



We divide the sample into training/estimating and out-of-sample (testing) portions. The former
consists of R > 1 observations. We use xed rolling-windows with R = 240 (R = 180) for the
full sample (sub-sample) analysis. If P denotes the number of one-step-ahead predictions, then
T = R+P+12, where T is the total number of observations of macro series. We construct G
recursively month by month using only information available at the time of estimation as described
in Section 4.3. Similarly, we recursively re-estimate the yield-curve factors PC?9 3t and PC sy,
whose dynamic versions are denoted PC st and PCy 5.1

Given the dynamic macro and yield-curve factors, we form our out-of-sample tests of H§! as
follows: Consider a \restricted" benchmark model and an \unrestricted" model, where the former
is the return forecasting model solely based on 5\52 3t and the latter includes 5\52 3t and Gt.
Given this pair of nested speci cations, we can obtain their time series of realized forecast errors
over the entire (out-of-sample) testing period and then conduct a model comparison. In other
words, the statistical signi cance of G’s incremental predictive power can be assessed by testing
the null hypothesis that the restricted model encompasses the unrestricted one. We form tests of
HS? similarly by replacing PC; 3¢ With PC1 5.

Panel A of Table 2 accesses the out-of-sample performance of G with three metrics: the out-

of-sample R?



(10-year) bond in the full sample (subsample).1®.

Panel Al (A2) shows that incorporating G into the restricted model based on |5\C/(1) 3t (561 5:t)
and a constant improves the model performance substantially in either the full or sub sample. First,
both the ENC-REG and ENC-NEW test statistics greatly exceed their asymptotic critical values,
regardless how the asymptotic ratio of P/R is speci ed, thereby rejecting both H§! and Hg?2.
Second, including Gy also raises RZ,, substantially. For instance, when 5\5(; 3t IS augmented
with Gy, R2, ranges from 0.271 for the 5-year bond to 0.349 for the 2-year bond in the full-
sample analysis. Note that the high values of R2, here are partially attributable to the negative
R2.. values under the restricted models. To summarize, panel A shows that the improvement in

forecasting accuracy due to G is statistically signi cant.

4.4.3 Economic Values

We now examine economic gains of G's out-of-sample predictive power. We follow Campbell and
Thompson (2008) and assess a mean-variance investor’s utility gains from trading on G against
a benchmark. The investor is assumed to dynamically allocate her portfolio between an N-year
bond (IV > 2) and a one-year bond (the risk-free asset) at a monthly basis, based on the standard
optimal (timing) strategy (e.g., Thornton and Valente 2012). Given her risk aversion coe cient
(v) and the N-year bond return volatility at time ¢, the investor implements the strategy based on
her out-of-sample forecasts of the N-year bond risk premium.

We consider three return predictors: G, 562 3, and 5\5(1) 3¢ +G. The timing strategies based
on these predictors are denoted S©, S¥, and S®*Y, respectively. In addition, we consider a buy-
and-hold strategy, denoted SBH. We then compare S€ against SBH, as well as S¢*Y against SY,
to examine incremental welfare gains due to G. Speci cally, we calculate the certainty equivalent
return (CER) values for each month in the testing sample and then estimate the following regression:

ug:t—uo;t = v+et, Where ug:t and uo;¢ represent realized utilities generated by strategies S€ and SBH

8Bianchi et al. (2021) nd that the performance of their macro factors is also relatively weak for short-term bonds.
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(SC*Y against SY), respectively. To examine whether the incremental utility gains are signi cant
or not, we test the null hypothesis that » = 0 (denoted H,) using a variant of the Diebold and
Mariano (1995) test, proposed by Harvey et al. (1997), that accounts for autocorrelation in the
forecasting errors.

Panel B of Table 2 reports the annualized CER values along with the corresponding p-values
for H, (in angel brackets) with N = 2,3, 4,5 for the full sample or V = 2,5,7, 10 for the post 1984
subsample. In each panel we consider two risk version levels: v = 3 as adopted by Campbell and
Thompson (2008) and Gu et al. (2020), and v = 5 as adopted by Thornton and Valente (2012) and
Bianchi et al. (2021). We also follow these studies to limit the portfolio weight on the N-year bond
to lie between 0 and 150%.

Results for S© vs. SBH, reported in Panel B1, indicate that the out-of-sample predictive power
of G can generate sizable welfare bene ts relevant for investors. For example, in the case of v =5
with N = 5, S© leads to certainty equivalent gains of 8.62% (4.05%) relative to SBH for the full
(post-1984) sample. Campbell and Thompson (2008) show that the investor’s welfare gain depends
on the relative magnitude of predictive R? and the buy-and-hold Sharpe ratio. Since the R2
values of G increases with the bond maturity and the Sharpe ratio decreases with the maturity, it
is not surprising to nd that CER values become greater as the bond maturity increases.

Results for S¢*Y vs. SY, reported in panel B2, show that the hypothesis H, is rejected at the
5% signi cance level in all but one case (with N = 2 and v = 5). In other words, incorporating
G into the out-of-sample forecasting of the bond risk premium can lead to signi cant utility gains
relative to trading on 55? 3 alone. Since these utility di erences have the units of expected
annualized return, they can be roughly interpreted as the di erences in portfolio management fees.
We nd that a mean-variance investor with v = 3 is prepared to pay extra 43-113 bps per year to
exploit the additional information as contained in factor G.

To summarize, Section 4 provides strong evidence against H35' and H$2. It also shows that
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rejection of the these two hypothesis carries signi cant economic values.

4.4.4 Additional Evidence

We further examine the predictive power of the SAGLasso factor in Internet Appendix IA.B and
summarize the main ndings here.

Given that LN is constructed using the same set of 131 macro series and includes all 131
series as well as squares and cubes of these macro variables, LN serves as a natural benchmark
for G (a linear combination of 19 series and some of their lagged variables). We nd that G shows
stronger predictive ability than LN" in both in-sample and out-of-sample analyses.

As mentioned before, the set of 131 macro series we use is adjusted for both data revisions and
publication lags. One relevant question is the impact of these two adjustments on bond return
predictability. We nd that the return predictability evidence based on G is not sensitive to the
vintage of macro data used. In contrast, publication lags pose much greater \danger" than data
revisions in forecasting future bond returns based on macro variables, at least in our sample. This
problem can be mitigated straightforwardly, however, since it is easier to make an adjustment for
publication lags than to gure out preliminary macro data releases and adjust for data revisions.

To better understand the source of the predictive power of the SAGLasso factor (Gy), we also
examine properties of its three components: the employment (g1¢), housing (g»t), and in ation
(g3¢) factors. As expected, git, got, and g3t all have low correlations with the yield curve factors;
as a result, G is weakly correlated with PC9 3t and hardly correlated with PC4;¢ and PCsy. The
three group factors also show signi cant predictive power, both individually and jointly. Following
JPS, we also examine the relative importance of the three group factors across bond maturity. Our
results indicate that relatively speaking, among the three group factors, git is the most important,

followed by gat, and then by g»¢, regardless of the bond maturity.t’

7Bianchi et al. (2021) consider more categories and nd that variables related to the stock and labor market (the
output & income and orders & inventories) are more important for the short-end (long-end) of the yield curve. Note
that the aggregate bond market is used to train {gn}.
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The SAGLasso algorithm is implemented using 131 macro variables along with six of their lags.
One question that arises is: Are lags of macro variables are essential to the predictive power of
the SAGLasso factor? If yes, what is the optimal number of lags to be included in our supervised
learning? We repeat the baseline analysis using the 131 macro variables along with N of their lags,
where N =0,3,9,12. We nd that the evidence of the return predictability is robust to the use of
no lags (/N = 0). Nonetheless, our results suggest that the SAGLasso factor constructed using the
131 macro variables along with 3 or 6 of their lags has the best performance in both the in-sample
and out-of-sample predictions. This nding re ects a trade-o between including more information
in the supervised learning and imposing a denser data structure to enhance the estimation stability.
While the baseline SAGLasso factor (with N = 6) seems to capture more information on long-term

bond premiums, the alternative SAGLasso factor with N = 3 outperforms for short-term bonds.

5 The SAGLasso factor and the Spanning Controversy

As an important application of the SAGLasso factor, we revisit the spanning controversy in this
section. We focus on the three main aspects of the controversy. First, whether a macro factor’s
predictive power is robust to nite samples (see Section 2). Second, whether a macro factor is an
unspanned pricing factor in an MTSM. Third, whether or not a macro factor’s temporal variation
can be captured by the yield curve. We show that the SAGLasso factor can address all three aspects

of the controversy by using the dynamic term-structure modeling framework.

5.1 The Modeling Framework

Following JPS, we assume that all risks in the economy are encompassed by an A -dimensional
state vector Xy = (P, Ft), where P denotes £ linear combinations of (noise-free) zero yields and

the (\V-L£)-vector F} represents macro factors as before. The short rate is an a ne function of Xi:

re =00 + 01Xt = o + 61, Pt + 0¢ I (6)
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The dynamics of X under the risk-neutral measure Q are assumed to follow a Gaussian process:

Pt I S %l (P
X, = =Pl PP + %2, €2~ MVN(O,I). (7)
I iy fo fr| |F1

It follows from Du e and Kan (1996) that the yield of an m-period zero-coupon bond is
v = Am+ By Xe, ®
where the expressions for Ay, and By, are given in Internet Appendix IA.C.1. The market price of
risk follows the \essentially a ne" structure of Du ee (2002):
t= e — R+ (T = DX = N+ M Xy, )

where {1, P} are the P-measure counterparts of {uQ, @}.

5.2 Finite Sample Analysis

The statistical inference done in Section 4.4 is based on asymptotic distributions. We now examine
H$' and H$? usinga nite-sample analysis. This is necessary because, rst, our dependent variables
involve overlapping observations by construction, and secondly, the rst and second PCs of yield
curves are highly persistent in our sample, with rst-order autoregressive coe cients (ACF) of
0.99 and 0.94, respectively (while the ACF of the SAGLasso factor is only 0.82). Below we rst
specify the underlying data-generating processes (DGPs) for Hg! and H$? within the framework
described in Section 5.1. We then construct nite-sample distributions of test statistics from return-

forecasting regressions and conduct nite-sample inference based on such distributions.

5.2.1 Data-Generating Processes for Null Hypotheses

DGPs under H3! or H$? impose no restrictions on model parameters and allow them to be esti-
mated freely. That is, as long as the V' x A yield loading matrix B = (Bm,, - - ., Bm,y, )’ is invertible,

the fraction of variations in term premia that are associated with macro factors is also attributable
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to certain linear combinations of these yields. This type of MTSMs are referred to as spanned
models and denoted by SM (£, N). If B is not invertible, then the model is no longer spanned.
Given that Fy = Gt, the DGP for H$! is model SM (2,3). To see why, suppose that yield PCs

are de ned in terms of k zero-coupon bonds with maturities M = {my, ..., my} as follows:
PCi nt=WYM=WUMm + ByXy), WeRN N,
Since SM (2, 3) is a spanned model, rank (Bm) =N'=3. The resultant invertibility of W3}, implies
F: (mﬁltzflé) = constant + 1},n.1,(WB\1) PC1 sy, (10)
where ¥m:12 = mBY, — (m — 12)BY, ,( P)1?2 — 12By, for m > 12. This result means that G has
no incremental predictive power for annual excess returns in the presence of PC1 3., consistent
with H$L. Similarly, the DGP for H§? is model SM (4,5).

At the heart of Eq. (10) is the theoretical spanning of G¢ by any three zero yields. In other
words, as long as & > N, the covariance matrix of ;M (stacked bond yields) has a rank of
3. However, empirically the sample covariance matrices are nonsingular regardless of the choice
of maturities M. The standard interpretation in the literature is that observed yields (denoted

M) are contaminated by small transitory noise, modeled as idiosyncratic \measurement error"

(representing a catch all term for model misspeci cation and other imperfections) as follows:
YPM = Am + B Xe + iy, ye ~ MVN(O, 02, 1). (11)

The presence of 7yt is also important in terms of accommodating hidden yield factors in spanned
models with A/ > 3. For instance, consider model SM (4,5), where PC1 s fully determine the
term premia and absorb the role of G;. If at least ve zero yields (or their linear combinations)
are assumed to be measured without error, the full-rank 5BY, indicates that the entire state vector
can be perfectly extracted from the ve yields. Consequently, H5? degenerates into a version of
H§! that involves more than three yield PCs. Alternatively, if measurement error is ubiquitous,

it becomes di cult to extract higher-order PCs, say, PC ., from the cross section of yields. As
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such, Eg. (11) opens up the possibility that bond risk premia contain a component attributable to

higher-order PCs, yet hidden from the observed yield curve | namely, a hidden factor.

5.2.2 Finite-Sample Inference

This subsection reports nite-sample properties of test statistics under Hg! or H§2, whose under-
lying DGPs are SM (2, 3) and SM (4, 5), respectively. We estimate these spanned models using the
full-sample zero-coupon yields with maturities M = {0.25,1,2,3,4,5} to generate samples over the
period 1964{2014, or using extended Fama-Bliss zero yield data with M = {0.5,1,2,3,4,5,7,10}
to generate samples for the post-1984 period.

As the inference about H§? requires all yields to be measured with errors, we implement the
model estimation with maximum likelihood using the Kalman Iter. To facilitate the interpretation
of the sources of risk compensation, we normalize yield-based state variables P; to the rst £ PCs
of zero yields; namely, Xt = (PC1 L.t, Gt). This rotation also o ers OLS-based starting values in
the estimation of P-dynamics of X;. When estimating Q-measure parameters, we rotate X; to X,
a state vector that satis es the canonical form of Joslin, Le, and Singleton (2013).%8

Under each spanning hypothesis, we generate 5,000 arti cial data sets from its underlying DGP
estimated with the full or post-1984 sample. In the in-sample analysis, we obtain the distributions
for two t-statistics (based on HH and NW standard errors, respectively) and R2.*° In the out-
of-sample analysis we consider the ENC-REG and ENC-NEW tests and R2,..2° We calculate the
5% critical value and p-value for each set of statistics, the latter being de ned as the frequency of

bootstrap replications in which the test statistics are at least as large as in the real data.

81n other words, instead of directly estimating parameters in Eqgs. (6) and (7), we estimate another (and shorter)
parameter vector &, (de ned in Internet Appendix IA.C.1) that encompasses all bond pricing information.

1®We do not consider the ¢-statistic based on the Hodrick (1992) standard errors here because it tends to under-reject
the null. Also, Ang and Bekaert (2007) show that it has desirable small-sample properties.

20In our baseline nite-sample inference, there is no distinction between the in-sample factor Gt and the real-time
factor G+. To make the out-of-sample inference truly out of sample, we perform full-scale simulations in which the
time series of 131 individual macro variables are generated together with the N-L yield factors. In each trial, the
SAGLasso estimator is implemented on the generated macro variables to construct macro factors Gr and Gy. These
re-simulated



Panel A of Table 3 reports nite-sample properties of test statistics for the full sample. Note
from panels Al (in-sample) and A2 (out-of-sample) that small-sample distortions appear more
severe under H31. For in-sample ¢-statistics, the \true" 5% critical value ranges from 3.46 to 4.47,
depending on the bond maturity and standard errors used; for R? (the incremental in-sample R?
due to Gy), the 95th percentile of its small-sample distribution is higher than 9%. However, all of
these critical values are substantially lower than actual statistics obtained from our data sample.
Similarly, note from panel A2 that there is strong evidence against H31. In particular, all statistics
have bootstrapped p-values less than 1%. Also, the critical value of RZ., ranges from 11.7% for
the 5-year bond to 13.6% for the 2-year bond. Results reported in panels A3 (in-sample) and A4
(out-of-sample) of Table 3 illustrate that under H2, small-sample distributions of test statistics
show even greater deviations from their asymptotic distributions. For instance, the critical value
for the HH ¢-statistics under H§? (panel A3) is at least 0.8 higher than its counterpart under Hg!
(panel A1), with the biggest di erence of 1.29 (= 4.75—3.46) for the 5-year bond. For out-of-sample
tests, the ENC-REG critical value is 4.02~4.36, and the ENC-NEW critical value can be as high
as 52.18 in small samples (panel A4), but the critical values are still not large enough to overturn
the asymptotic analysis-based rejection of H§? concluded in Section 4.4.2.

We nd similar results for the post-1984 sample (panel B of Table 3), although statistics esti-
mated from the subsample are subject to less severe distortions than those from the full sample.
Particularly, the asymptotic analysis-based evidence against H3' and H§? post 1984 (panel B of
Table 2) is robust to small samples.

Overall, we draw three conclusions from Table 3. First, small-sample bias tends to decrease with
the bond maturity. Second, the asymptotic analysis-based evidence against H3' and H§? (Table 2
and also Internet Appendix IA.B) is too strong to be overturned. Third, results on descriptive
statistics show that none of the 5,000 arti cial samples are able to generate a R? or RZ, that

exceeds the actual incremental R?.
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We present more robustness analyses in the Internet Appendix. Section IA.D shows that model
SM (2, 3) provides a more robust test of HOSl than does the DGP proposed in BH. Section IA.E
conducts the Ibragimov and Muller (2010) test of H3! and Hg? that is robust to heteroscedasticity,
autocorrelation, and structural breaks, and nds that among the ve yield factors and the SAGLasso
factor, the latter is the only robust bond return predictor. Finally, Section IA.F examines an
alternative version of H$? where the conditioning variable Z is the \cycle" factor of Cieslak and
Povala (2015) given that this factor is spanned. We nd that this hypothesis is rejected as well.

To summarize, the results from our nite-sample analysis strongly reject the two spanning
hypotheses, suggesting that it is very unlikely for a spanned MTSM to account for the additional

predictive power of the SAGLasso factor as observed in our sample.

5.3 Testing the Macro-Unspanning Hypothesis

The rejection of the spanning hypotheses with F; = CAT*t implies that MTSMs incorporating CAT*t may
be preferable to \yields-only" term structure models (YTSMSs), say, for term premium inference.
Then a follow-up question is: Should Gt be used as a bond-pricing factor in an MTSM and if yes,
is @t a spanned pricing factor? We address this question by formulating and testing the \macro-
unspanning hypothesis™ (MUH), which intuitively says that in spite of its predictive power for bond

risk premia, Gy is not a spanned pricing factor.

5.3.1 The Macro-Unspanning Hypothesis
In the MTSM framework described in Section 5.1, the MUH (arising from the conditions speci ed
in JPS and BR for unspanned macro risks) can be stated as follows:

HyS: 6,¢=0 and =0 (12)
Under these restrictions, the short rate depends only on P (£ linear combinations of zero yields),

and the Q-dynamics of F; as represented by {u, ?p, 2} are not identi able without information

from other asset markets. It follows that only risks of yield PCs are priced in the Treasury market.
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Namely, the one-period risk premium, t, given below, is £-dimensional:

t=Hp—hg+ | o ppo pr| Xt = Ao+ MXe (13)

For convenience, such an A/-factor MTSM that satis es Hg'® is termed an unspanned model and
denoted USM (£, N).

Note that when £ = 3, H{'S represents the standard version of the MUH: Macro-based forecasts
are not spanned by the contemporaneous yield curve (equivalent to the case focused on in BR’s
likelihood-ratio tests). When £ > 3, H§'S denotes a more general version that the predictive ability
of macro factors is not spanned by the Itration generated by the yield dynamics. We examine
both versions and thereby estimate both models SM (£, N) and USM (£, N) with £ = 3,4,5 in
this analysis. To match the data sample used in JPS and BR, we estimate each of these six models
using zero yields with M = {0.5,1,2,3,4,5,7,10} over the period 1985{2007.

Note also that H{'S is not simply the opposite of H3' or H$2. First, while HYS concerns
whether a given macro factor with some explanatory power for term premia is a pricing factor,
H§' and H? focus on whether variables outside of the bond market provide additional explanatory
power for bond risk premia. Second, term structure modeling implications from the outcome of
testing H§t or H3? are di erent from those of testing H{'S. For instance, suppose N = 5. Rejecting
HY'S implies a rejection of model USM (4,5), where the alternative model is SM (4,5); namely, it
is SM (4, 5) versus USM (4,5). In contrast, rejecting Hg?2 implies that USM (5, 6) ought to be used
to infer the risk premium component in long-term yields, and accepting H3? means that SM (4, 5)

(or YTSM (5)) should be used; that is, it is SM (4,5) versus USM (5, 6).2

21 As aresult, a test of H§'S corresponds to a test of equal forecast accuracy for non-nested models in the regression
setting in Eq. (1). Suppose that Zy = PC1 s and Fy = Gy. The question of interest is whether the additional
predictive power of Gy is captured by the six yield factors (i.e., PC1 ;1) or any other six linear combinations of
\true" yields, similar to an encompassing test for comparing non-nested models: (PC1 s.t, Gt) versus PC1 &:t.
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5.3.2 Statistical Tests of the Macro-Unspanning Hypothesis

We conduct two tests of HYS. One is a model-based likelihood ratio (LR) test. As there is no
analytic expression available for the limiting distribution under H{'S, we compute the critical values
of the test statistic based on the approximation method used by BR. However, the approximation
is done conservatively, and as a result, this LR test tends to under-reject H§S.22 To circumvent
this problem and make a more robust inference, we perform another test of HyS (a model-free test
in the spirit of BR) by directly testing the yield loadings on the SAGLasso factor without imposing
no-arbitrage restrictions. Given the assumption that all yields are observed with measurement
error, we can focus on the loading matrix By, = (B} ,, B] .¢) in Eq. (11) in this model-free test. To
implement the test, we rst estimate Eq. (11) with the OLS and then conduct LR tests of B . = 0.

Panel A of Table 4 reports the results from both the model-based (column 2) and model-free
(column 3) tests of HYS, for £ = N — 1 = 3,4,5. Note from column 2 that the LR statistics are
always smaller than the 10% critical values, V£. An unreported decomposition of the log-likelihood
function reveals that the di erence between SM (£, ) and USM (£, N) mainly derives from the
Q-likelihood. This result, as documented by BR for £ = 3 with two macro factors, is not surprising
as the restrictions in H§'S are not placed on the P-dynamics of USM (£, ). However, our test
results show that the improved yield curve tting of SM (£, N) over USM (£, N) is statistically
insigni cant, in contrast to BR’s nding. The p-values reported in column 3 indicate that Hy'S is
not rejected by the model-free test either at the conventional signi cance level of 5%, V..

Results in panel A also suggest that the negative e ect of excluding G from tting the yield
curve becomes weaker when N increases. This nding is not surprising: Although the higher-order
PCs are considered to be unimportant in explaining cross-sectional variations in yields, they help

t the term structure more or less. Thus, when an additional yield factor is included in the model,

22 s discussed in BR, while Hy'S imposes four zero restrictions for the case of £ = 3, a comparison of test statistics
with the critical values of a x2(4)-distribution would be misleading. Under the approximation adopted by BR (detailed
in their Section 3.1), test statistics are evaluated against a y2-distribution with (k—A)(N + 1) — 1 degrees of freedom
when only one macro variable is used, where & is the number of bonds involved.
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the already limited role of G in the cross section becomes more redundant.

To summarize, when the SAGLasso factor is used as the sole macro factor of an unspanned
model, both the model-based and model-free tests fail to reject the MUH. As mentioned before, the
main reason for this nding is that in spite of its strong predictive power for excess bond returns,
the SAGLasso variable is weakly correlated with yield PCs and is unspanned (see Section 5.4). See

Internet Appendix IA.G for more applications of unspanned models.

5.4 Is the SAGLasso Factor Unspanned?

To examine whether the yield curve can explain the temporal variation in the SAGLasso factor, we

follow JPS and regress Gt on N observed yield PCs:
Gt=’70+71PC(1) N;t+5t~ (14)

To see whether the regression R? is low enough to invalidate spanned models, we follow BR and eval-
uate it against its distribution implied from an N -factor spanned model rather than against unity.
To this end, we consider distributions implied by \unconstrained" models as well as \constrained"
ones, and also allow for macro measurement error, denoted by n¢ with a standard deviation of o .
In contrast, BR focus on unconstrained models with zero n¢. Unconstrained models here refer to
MTSMs imposing no constraints on the Sharpe ratio (SR) of bond returns. Such models may imply
unrealistic SRs, as noted in Du ee (2010) and Joslin, Singleton, and Zhu (2011). MTSMs with the
selected zero restrictions on {\g, A1} are referred to as constrained models and denoted CSM (£, \V)
for spanned models and CUSM (£, N) for unspanned models, with £ being the number of yield
factors included in the model (see Internet Appendices IA.C and IA.G).

Panel B of Table 4 reports the empirical R? value and its 95% con dence interval (in brackets
underneath) in column 5, where the interval is based on 5,000 data sets simulated from constrained
model CSM (NV-1, NV), estimated with and without macro measurement errors, for N’ = 4,5, 6. First,

consider the case without macro measurement errors (ng = 0), a commonly made assumption in
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the macro nance literature (see, e.g., JPS and BR). The results show that Y.\, the empirical R? is
around 14.5% and outside of its 95% con dence interval with a p-value (de ned as the fraction of the
simulated samples in which the R? is below the value in the actual data) lower than 2.5%. That is,
the SAGLasso factor indeed has R? values too low to be reconcilable with spanned models. We also
evaluate empirical R?s against their distributions implied from unconstrained models SM (-) and nd
that the results are similar to those reported in panel B. Since we assume in our model estimation
that bond yields are all measured with error, the aforementioned results provide evidence that
yield measurement error does not account for the large proportion of unspanned macro variation
as observed in the real data in our sample.?3

Next, we assume that n¢ # 0. Intuitively, allowing for macro measurement errors would create
a further unspanned variation of G and thus make it more likely for spanned models to reproduce
documented regression evidence. We re-estimate model CSM (-1, ') assuming n¢ # 0 and nd
that the resulting implied R? distributions are barely distinguishable from their counterparts with
zero n¢. For example, the 95% con dence intervals implied from model CSM (3, 4) with and without
macro measurement error are [0.587,0.769] and [0.593, 0.847], respectively (column 5 of Table 4).
As a result, even if including n¢ shifts the model-implied R? distribution to the left, the net impact is
minimal; that is, unspanned macro variation observed in our sample cannot be attributed to macro
measurement errors either. Behind this nding is the tiny standard deviation of the measurement
error in @t: o, < 3bpsfor 3 <N <6. Note that as @t is standardized under the SAGLasso
procedures (Section 4.2), o . is negligible compared to the total standard deviation of Gr.

Panel B of Table 4 also includes the results from a spanning test applicable to macro factors

allowed to contain \noise" (Du ee 2013a): if yields span the true state vector, the regression

23BR consider regressions similar to Eq. (14) albeit with GRO or INF as the dependent variable; their simulation
results, based on unconstrained models, indicate that adding small yield measurement error makes spanned models
capable of generating the appearance of unspanned macro information in the real data. In an untabulated analysis we
show that the main reason for such simulation results is, however, that when a macro variable with a low correlation
to the yield curve is used as a spanned factor, most variation in this macro factor is captured by high-order yield
factors by construction; as a result, a spanned model with small yield measurement error can reproduce a large
amount of unspanned macro variation even if the macro variable under consideration is unspanned.
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in Eq. (14) should produce serially uncorrelated residuals even though the estimated R? could
substantially deviate from one. The estimated rst-order correlation of residuals of the regression
is around 0.67, 4 < N < 6 (column 6). Given that the serial correlation of G¢ is 0.71, the above
result suggests that whatever the regression is missing cannot be explained by white-noise shocks.

Overall, the results of Section 5.4 provide strong evidence that much of the variation in G is not
captured by the yield curve. This unspanned nature of the SAGLasso factor reinforces our earlier
conclusion that it carries term premium information independent of the yield curve. Moreover, this
macro variable has very small measurement error even when it is included as a spanned factor in

a low-dimensional MTSM.

6 Conclusion

There is no consensus in the literature on whether or not macro variables have incremental pre-
dictive power for future excess bond returns over contemporaneous bond yields. However, macro
variables considered in the empirical literature are typically standard ones, such as measures of
real growth and in ation. These variables either show little unconditional predictive power for
bond risk premia or are highly correlated with contemporaneous yields and thus have insigni cant
conditional predictive power. In this study we construct a new macro variable using Supervised
Adaptive Group LASSO (SAGLasso), a machine learning algorithm, from a panel of 917 macro
variables (131 macro series along with six of their lags) that are adjusted for both data revisions
and publication lags. We show that this new macro variable, termed the SAGLasso (macro) fac-
tor, has strong out-of-sample predictive power for bond risk premia conditional on the yield curve.
Additionally, this predictability can provide investors with signi cant economic gains.
Importantly, the SAGLasso factor is parsimonious, intuitive, and easy to interpret. Speci cally,
it is a linear combination of merely 30 selected variables out of 917, and consists of a novel housing

factor, an employment factor, and an in ation factor. In addition, in spite of its strong predictive
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power, the SAGLasso factor has low correlations with contemporaneous yields by construction;
thus, it is a \pure" macro-based bond return predictor.

The SAGLasso macro factor also provides a potential resolution to the spanning controversy
in the macro- nance literature. First, the SAGLasso factor is not spanned by contemporaneous
yields. Second, in an MTSM with the SAGLasso factor as its sole macro factor, the hypothesis that
it is unspanned by the yield factors is not rejected. Third, incorporating the unspanned SAGLasso
factor into an MTSM with realistic Sharpe ratios has nontrivial economic bene ts. Fourth, the
importance of the SAGLasso factor cannot be attributed to measurement errors in yields or itself.
Furthermore, its measurement error is small.

To summarize, using a machine learning algorithm we are able to construct a new, parsimonious,
and easy-to-interpret macro variable with strong and robust predictive power for bond risk premia.
In addition, this new macro factor can potentially help resolve the spanning controversy in the
macro nance literature. We use the algorithm to construct macro-based bond return predictors
in this study but SAGLasso should also be useful in similar big data applications in nance and
economics. For instance, we may construct a real-time expectation factor using the SAGLasso
algorithm and examine if the implied bond risk premia are consistent with those demanded by
investors in history (Piazzesi et al. 2015). This would allow us to explore an alternative explanation
for the spanning controversy: It is due to the discrepancy between the short-rate expectation of
real-time investors and the ex post estimates of an econometrician (Cieslak 2018).%* We may also
expand the macro panel data to incorporate survey forecasts of macro variables, which are shown
to provide additional information in term structure modeling (see, e.g., Chernov and Mueller 2012

and Kim and Orphanides 2012). We leave these questions to future research.

241n an earlier version of this paper, Huang and Shi (2010) provide evidence consistent with the potential mechanism
suggested by Du ee (2011). As noted in Cieslak (2018), these di erent explanations of the spanning controversy are
not, however, mutually exclusive because its resolution \depends on the particular variables that the econometrician
assumes a part of his/her information set” (p. 3269).
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A Notation and Frequently Used Terms

Spanning hypothesis | (H3')

Spanning hypothesis 11 (H5?)

Macro-unspanning hypothesis (HY)

oJe,

91, G2, and gs

g1, g2, and E/g

H

IN"

PC{_5 = (PC7,PC3,PC%)
PCY_,

PC1_5 = (PCl7...,PC5)
PCi_5

CSM (L, N)

CUSM (L, N)

SM (£, N)
USM (£, )

YTSM (\)

Macro variables have no additional predictive power for excess bond
returns over the rst three principal components (PCs) of the ob-
served yield curve

Macro variables have no additional predictive power for excess bond
returns over the rst ve PCs of the noise-uncontaminated yield curve
So-called knife-edge restrictions given in Eqg. (12) in the paper for a
macro- nance term-structure model (MTSM) to be unspanned

the convergence gap de ned by Berardi et al. (2021)

the Cochrane and Piazzesi (2005) forward rate factor

the (unconditional) the Supervised Adaptive Group LASSO (SA-
GLasso) macro factor constructed in this study

the recursive SAGLasso macro factor constructed in this study
(unconditional) SAGLasso group factors constructed in this study,
representing \employment,” \housing," and \in ation," respectively
recursively constructed g, g>, and g3

the hidden factor proposed by Du ee (2011)

a modi ed Ludvigson and Ng (2009) macro-based return predictor
vector of the rst three PCs of the observed yield curve

recursively constructed PC{_,

vector of the rst ve PCs of the noise-uncontaminated yield curve
recursively constructed PC;_5

An N-factor constrained, spanned MTSM | Model SM (£, N) with
restrictions on the model-implied Sharpe ratios of bond returns

An AN -factor constrained, unspanned MTSM | Model USM (£, N)
with restrictions on the model-implied Sharpe ratios of bond returns
An N-factor spanned model | an N-factor MTSM with £ (W — 1)
yield factors and one macro factor (the SAGLasso factor G) that does
not satisfy the macro-unspanning hypothesis H}*

An N-factor spanned model | an N-factor MTSM with £ (W — 1)
yield factors and one macro factor (the SAGLasso factor G) that
satis es HY®

An N-factor \yields-only" term-structure model
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B Macroeconomic Series Used in the Analysis

Two sets of 131 macroeconomic series are used in our empirical analysis. The rst, the standard one
used in the literature, includes revised macroeconomic data. The second set consists of real-time
macroeconomic data only ] the macro series adjusted for data revisions and publication lags.
Table A.1 lists the 131 macroeconomic series and contains the full name (column 4) of each
series, along with its series number (column 1), group number (column 2), mnemonic || the series
label used in the source database (column 3), short name (column 5), and data transformation ag
(column 6). The transformation ag = 1. no transformation applied to the series; ag = 2: the
rst di erence applied; ag = 3: the second di erence; ag = 4: the logarithm; ag = 5: the rst
di erence of logarithm; and ag = 6: the second di erence of logarithm.?®
We compile our macro data in three steps. First, we match the panel of 131 series with ALFRED
and nd that 70 of them are included in the latter. For each of the 70 matched series, we collect
its latest nine real-time observations at the end of each month (we do this because some macro
variables need to be transformed to their second-order log-di erences). However, vintage versions
of these 70 series are not balanced and go back to 1964 for only 25 series. Nonetheless, only 3 out
of the 19 macro variables eventually selected by SAGLasso do not have their vintage data available
going back to January 1985. Therefore, the look-forward biases should have a minimum impact, at

least on our results obtained from the post-1984 sample.



the integer number of months in the time interval between the end of the period over which it
is measured and its release date. As shown later, such adjustments matter in our predictability
analysis.

Finally, we investigate the time-series properties of these 131 series and determine transforma-
tions needed to stationarize each of these series. Table A.1 provides a complete list of the 131
series and, for each series, its data transforms applied, its publication lag, and the availability of
its vintage data.

Column 7 labeled \Gy¢" of Table A.1 shows the values of a ag indicating which of the 131
macroeconomic series has a nonzero coe cient for its contemporaneous and/or lagged values (up
to 6) in the SAGLasso regression. The ag value of \0" corresponds to the contemporaneous
variable, and the value of \/" denotes lag ¢ (in months), £ = 1,...,6. For instance, macro series
#41 (CES048) in group 2 | which measures the employment situation in the industry sector \Trade,
Transportation and Utilities" ] is selected by the SAGLasso approach and has 2 variables (out of
7), the lag-5 and lag-6 values of the series, included in the SAGLasso macro factor G. In total, 19
out of the 131 series (30 out of the 917 macro variables) enter the G factor. Column 9 labeled \Lag"
reports each series’ publication lag (in months), which is de ned as the time between the end of the
period over which the series is measured and its rst release date. Note that out of the 131 series,
the four in group 8 \stock market" (#81 through #84) are the only ones without a publication
delay. The last column, labeled \vintage," indicates which macro series has vintage data available,
where an asterisk denotes those series whose real-time series are available and used in our empirical
analysis. Note that out of the 19 series included in the G factor and two additional series (#42
and #53) included in G (the out-of-sample version of @), the three commodity price indices (#111
through #113) are the only series that have no vintage data available in the ALFRED database.

However, given the nature of these three series, they should not be subject to revision.

C Supervised Adaptive Group Lasso Method

We rst brie y review the group lasso (Yuan and Lin 2006). We begin with the following model:
Y = X3° +e, (15)

where e is assumed to be a T-dimensional vector of i.i.d. errors (we will relax this assumption
later). The main assumption of the Group Lasso is that some subvectors of the true coe cients 3°

are zero. We denote by h € Hy = {h : 82 # 0} the unknown index set of non-zero subvectors of
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(2. Hence, the Group Lasso involves identifying #; and estimating 5°.

The method is usually implemented by estimating the following restrictive form:

min {Ily—xﬁ||2+/\2|5hll}- (16)
2R h

Note that expression (16) reduces to the Lasso when |#| = N and each & corresponds to the one-
dimensional subspace of RT spanned by the corresponding column of the design matrix X. In our
implementation, we consider the general Group Lasso and more speci cally, the adaptive group

lasso, as follows:
min {|y — XB|” + Athnﬁhn} : (17)
h

Next, we describe the Supervised Adaptive Group Lasso (SAGLasso) algorithm proposed in
Section 4.1. The method consists of two steps.

Step I: For cluster h € H, compute fn I the cluster-wise Adaptive Lasso estimate of 5", namely,

B = argmin { [|arx — XnBM2+ ) Anx njl B 7 (18)
i
where arx is a vector of average excess bond returns across maturity and #y; the j-th component

of Wy, the vector of the (adaptive) weights. Zou (2006) recommends using A°-S to construct Wp,.
As collinearity is a concern in our case, we set Wy = 1/|3R'P| n, where AR'D is the best ridge
regression t of arx on Xy. That is, for cluster h we only use macroeconomic variables within
that cluster to construct predictive models. The optimal pairs of (4, An) are determined using

ve-dimensional cross-validations. It is worth noting that tuning parameters A\, are selected for
each cluster separately in order to have di erent degrees of regularization for di erent clusters.
This exibility allows us to uncover subtle structures that otherwise will be missed when applying
the (adaptive) lasso method to all the series/clusters at the same time.

Note that for each cluster h € #, the adaptive lasso A" has only a small number of nonzero
components. Let 3" = A \ 0, the vector of nonzero estimated components of A" given by the
cluster-wise model (18), and denote the corresponding part of X, by X},. In our case, a typical
cluster size (dim(Xy)) of 80 variables may reduce to a dim(X}) of 8 ~ 10. Namely, the number of

macro variables selected in Step | is signi cantly smaller than the original number to begin with.

Step II: Construct the joint predictive model under the Group Lasso constraint as follows:

8 = argmin {Harx ~XBP+AY whuﬁhu} , (19)

h2H
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where X is formed by concatenating the design matrices X;. The parameter A is also chosen by

ve-fold cross-validation. With A — oo, estimates of some components of Bns can be exactly zero.
Following Yuan and Lin (2006), we obtain the solution in Eq. (19) e ciently by using the modi ed
least angle regression selection algorithm of Efron et al. (2004).

In out-of-sample tests conducted in our analysis, tuning parameters {An, A} are selected recur-
sively starting from the beginning of the test period using cross-validation as well as information
only available at the time of estimation. However, to reduce the bias due to the limited training
sample size, we use ten-fold cross-validation for the rst ve years of the out-of-sample testing
period (e.g., the period 1985{1989 for the full sample). After that we go back to standard ve-fold
cross-validation to restore the balance between bias and variance. Also, to reduce the computa-
tional burden in the nite-sample analysis (Section 5.2.2), we select {\, A} once for each quarter
rather than for each month; that is, {\n, A} selected in January are also used to perform SAGLasso
model selection in February and March, until they are reselected in April.

Note that the SAGLasso algorithm di ers from the supervised principal component analysis
(SPCA) ] another two-step supervised learning approach ] proposed by Bair et al. (2006) in a
biological setting, which has been applied to in ation forecasts in Bai and Ng (2008).2” For instance,
the former takes into account the underlying cluster structure of candidate variables, whereas the
SPCA does not consider all the candidates simultaneously. Also, variables selected in the SPCA are
the PCs whose economic interpretations may not be obvious even though they may have satisfactory
prediction performance. Factors constructed using SAGLasso, however, are easier to interpret.

Group Lasso is also applied by Freyberger et al. (2020) to identify rm characteristics in shaping
expected equity returns. In their analysis, each group consists of 20 portfolios associated with (a
polynomial function of) one characteristic, and model selection is done at the group level only.
In our analysis, each group consists of macro variables supposed to capture the same economic
concept, and Adaptive Lasso is used within each group (before model selection at the group level)

to further mitigate the curse of dimensionality and boost the out-of-sample performance.

27Gibson and Pritsker (2000) use partial least squares to choose risk factors of xed-income portfolios. Goto and
Xu (2015) apply the graphical lasso to portfolio selection.
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Table 2: Out-of-Sample Performance Assessment

Panel A reports accuracy of out-of-sample forecasts from models with and without the
real-time macro factor G as a return predictor. Benchmark pregg(c)ors considered include
the rst three principal components (PCs) of observed yields (PC; 3.) and the rst ve

PCs of the noise-uncontaminated yield curve (551 5:t). The rows labeled \ENC-REG"
report the out-of-sample ¢-statistics proposed by Ericsson (1992), and those labeled \ENC-
NEW" report a variant of the ENC-REG statistic proposed by Clark and McCracken
(2001); both tests share the same null hypothesis that the benchmark model encompasses
the unrestricted model with excess predictors. \R2,." denotes the out-of-sample R? of
Campbell and Thompson (2008), and the rows labeled \ R2.." represent the incremental
R2 . due to G. Panel B reports the certainty equivalent gains (in percentage) for a mean-
variance investor who selects an N-year bond (N > 2) along with a 1-year bond and who
uses portfolios weights potentially depending on G-based forecasts. The investor’s risk
aversion coe cient ~ is assumed to be either 3 or 5. The p-values of certainty equivalent






Table 4: Statistical Inference about Unspanned Macro Risks

Panel A reports results from likelihood-ratio tests of the macro-unspanning restrictions
(H§'S), given in Eq. (12), that are imposed on an A/-factor unconstrained macro- nance
term structure model (MTSM). Its underlying state vector is Xt = (PC1 L, @t), where
PCy Lt denotes the vector of the rst £ principal components (PCs) of the noise-
uncontaminated yield curve and @t represents the SAGLasso macro factor. Model-based
test statistics (column 2) are evaluated against the critical values of a x2-distribution with
degrees of freedom equal to (kK —N)(N +1) — 1, where k is the number of bonds involved.
Model-free test statistics (column 3) are evaluated based on the x?(k)-distribution. The
p-values appear in angle brackets immediately beneath. Panel B considers the projection
of the SAGLasso macro factor (@t) onto the rst V' PCs of the yield curve (PC? y.p)-
Column 5 shows regression R?s along with two sets of 95% con dence intervals based on
5,000 arti cial samples simulated from model CSM (L, /N) as speci ed in Section IA.G.1
(which denotes the A-factor constrained MTSM with a spanned @t and whose state
vector X; = (PC1 ._;tﬁt)). The con dence intervals in brackets beneath are obtained
under either the assumption that there is no macro measurement error (n¢g = 0) or
that there is macro measurement error (¢ # 0), as indicated in column 4 where 7
denotes macro measurement error (\Macro M.E."). Column 6 reports the rst-order
serial correlation of residuals.

) 2 ©) 4) ®) (6)
Panel A: Panel B:
Tests of unspanning restrictions Regressions of G on PCY_ .,
N Model-based Model-free Macro M.E. R? AR(1) of residuals
4 28.69 10.05 0.145
(0.122) (0.074) No (n; =0) [0.593 0.847]
Yes (ny #0) [0.587 0.769] 0.667
5 24.29 8.23 0.145
(0.185) (0.083) No (ny =0) [0.506 0.833]
Yes (ny #0) [0.459 0.784] 0.667
6 17.55 6.17 0.146
(0.287) (0.104) No (ny =0) [0.263 0.651]
Yes (n; #0) [0.239 0.630] 0.666
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Figure 1: Word Cloud from Selected Macroeconomic Series

This gure reports the list of words constituting the names of macroeconomic series that are selected
from the SAGLasso algorithm. Font size of a word is proportional to the frequency with which the
word appears in selected macroeconomic variables and their lags.
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Figure 2: The SAGLasso Factor and Excess Returns on the Five-Year Bond

This gure presents time variation in the normalized SAGLasso factor as well as excess returns on
the ve-year bond over the sample period from January 1964 to December 2013. Shaded bars denote
months designated as recessions by the National Bureau of Economic Research.

4 T ] T ] T T T T T B 20%

3r -1 15%
=)
5
2 -4 10% @
\ ‘ 5
S I e
5 1r [ ‘ ‘ . 1 5% 6
E 1 f ‘ | g
2 o ff (g M oo <
) i . ' i ° 5
3 2
(O] i =
5) -1 | - -5% 5
l I p
2F 4-10% &
3]
<
L

-3r —1-15%

| L || | | | | | | - -20%

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

46



'so|qeLien (31ym) ueriodwi 3ses) 01 (anjg dJep) [nyaoedwl 1sow ayl 83e31pUl UWN|0I Yoes UIYLM sjusipelh 10jod pue ‘suiniad puog SSaoxa JO a1ep UOIIBAISSqO syl 0}
spuodsal09 sixe-X “(sanjen pabbe] pue snosuelodwajuod 18yl Uo) SJUBID 909 0J3Z-UOU / 1SOW Je dABY PIN0J SaLIas J1LOoU0J3049eW Yoes pue ‘sudnial puoq SSaoxa
peaye-Jeak-auo 1seda1o) 01 WylIoble osse1OWS ayl ojul Indul si sieak oz 1sed ayl 490 elep |aued 21WoU0230408W Y] ‘86T Adenuer aduls yluow yoes uj (saliss
) 19x4ewW X201s (89 pue (sa11as Tz) sadipul 3oLd 1o saouud (29 {(sa1ias gg) eroueu 1o saied 1sa1aul | X4 pue puoq (99 ((salss TT) 1patd pue Asuow (G9 ((saluas
¥T) SaLI01UBAUI pue S19pJo (YO ((sal4as QT) 4039as Buisnoy (€9 ‘(salaas gg) 1axdew Joge| (zo ‘(sawas 2T) indino (19 :sdnoub Jybia ojul papIAIp aJe salIas TET YL
‘uonoIpald uanlal puog Mopulm-Buljjod syl ul senjea pabbe| J1ayl pue sa1Ias JIWOU0I040eW TET Yl YLM PaIeIdosse SJusld 909 JO WJou ayy sjussald aunb  siyl

aoueodw] sjgeldeA 042B|A JO uonelIeA awl] g ainbiH

47



Internet Appendix to \Machine-Learning-Based Return Predic-
tors and the Spanning Controversy in Macro-Finance'"



Internet Appendix

Table of Contents

IA.A Inferring Higher-Order Yield Principal Components



IA.C1
IA.D1

IA.E1
IA.F1
IA.G1
IA.G2

Estimates of Parameters on the Market Price of Risk . . . ... ... .. 39
Finite-Sample Properties of Statistics in Testing Spanning Hypothesis |

under a VAR-based Data-Generating Process . . ... ... ........ 40
Ibragimov-Muller Test of Spanning Hypotheses land Il . . . . .. .. .. 41
Tests of An Alternative Version of Spanning Hypotheses I1. . . . . . .. 42

Out-of-sample Forecasting Performance of Macro-Finance Term Structure Models 43

Properties of Annual Excess Returns for Five-Year Bonds Implied by Term Struc-
ture Models with Unspanned Macro Risks . . . . . ... ... .. ......... 44

List of Figures

IA.B1

Predictive R? of Macroeconomic Factors Based on Di erent Lags . .. ... ... 45




IA.A Inferring Higher-Order Yield Principal Components

This section examines the relation between PCs of observed yields and those of \true" yields to

provide justi cation for the use of Itered PCs in tests of Spanning Hypothesis 11 (H§?).



reveals that replacing ( Itered) PC4 st by PCJ] 5. results in lower R? values, regardless of the
bond maturity, where for convenience those four R? values from Table 2 are shown in the row
labeled \R? (Table 2)" in panel B. Note that the decline in R? ranges from 0.014 for the four-year
bond to 0.018 for the three-year bond (the second last row of panel B), and the percentage decrease
in R? ranges from 5.49% for the four-year bond to 7.73% for the three-year bond (the last row).
Given that the rst three factors alone can have an R? of 16{19% (columns 2{5 of Table IA.B5),
the aforementioned amount of information loss in the fourth and fth factors is far from trivial. As

such, using PC{ 5. in regression tests of HE? would make the hypothesis overrejected.

IA.B More on Properties of the SAGLasso Macro Factor

This appendix further examines the properties of the SAGLasso macro factor (CAT*). Section 1A.B.1
investigates the predictive power of the three group factors which constitute the SAGLasso factor.
Section 1A.B.2 examines whether the three group factors are spanned or not. Section IA.B.3
compares the predictive power of the G and Ludvigson and Ng (2009; LN09 hereafter) macro
factors. Section IA.B.4 investigates the potential impact of data revision and publication lags on
return predictability. Section IA.B.5 presents in-sample tests of the spanning hypotheses, H§! and
H§?. Lastly, Section 1A.B.6 implements the SAGLasso algorithm using 131 macro variables along

with di erent numbers of their lags.

IA.B.1 Predictive Power of the Three Group Factors

The SAGLasso macro factor Gy consists of three group factors: the employment (g1¢), housing (gat),
and in ation (gst) factors. To better understand the information content of factor Gt, We examine

properties of these three group factors in this subsection. Let {git}1 i 3 denote {git,1 <i < 3}.

IA.B.1.1 Sample Period 1964{2014

Table 1A.B1 reports the Pearson correlation matrix of @, {#it}1 i 3, and ve yield curve factors.
The ve yield curve factors include the rst three principal components (PCs) of observed bond
yields, {PC{.,i =1,2,3}, and the lItered higher-order PCs of noise-uncontaminated yields, PC ;¢

and PCs.t. As expected, git, g2t, and gs; all have low correlations with the yield curve factors. In



particular, the novel housing factor gzt has a correlation of -0.167 with PC%.;, -0.073 with PC9.,,
and 0.222 with PC§,;. As a result, G is weakly correlated with PCY 3. and hardly correlated with
PC 4.+ and PCs. Recall that by construction the G factor and its three component factors control
for the Treasury and FX variables (group 5) out of the 131 macro series. The results shown in the
table verify that G and {#it}1 i 3 are all weakly correlated with the yield curve. Nonetheless, as
shown below these group factors have strong predictive power as a result of the SAGLasso procedure
used for model selection.

We now examine the predictive power of g1t, g2t, and gst, both individually and jointly. Panel A
of Table 1A.B2 presents results from predictive regressions of excess bond returns on normalized gi¢,
gat, and gat, for 2-, 3-, 4-, and 5-year bonds in the full sample period. Panel Al reports coe cient
estimates, t-statistics, and R-squared of univariate regressions on each of the three group factors.
Note that these factors all exhibit signi cant unconditional predictive power, with an R? of 21{22%
for g1¢, about 14{15% for g»¢, and 17{18% for g3;. Results from multivariate regressions, reported in
panel A2, show that the three group factors are still all signi cant and together have an (adjusted)
R? ranging from about 40% for the 2-year bond to 43% for the 3-year bond.

As shown in Joslin, Priebsch, and Singleton (2014; JPS hereafter), the impact of macro risk
factors on bond risk premia depends on horizons. Panel A of Table IA.B2 illustrates the relative
importance of the three group factors across bond maturity. The univariate regression results
indicate that the regression coe cient on gyt is the largest, followed by the one on gs, and the
coe cient on gt is the lowest, regardless of the bond maturity. The univariate regression R?
values exhibit the same pattern. In the multivarite regressions, the regression coe cients on the
three group factors maintain the same ranking, regardless of the bond maturity. These results
indicate that relatively speaking, among the three group factors, the employment factor (g1¢) is the
most important, followed by the in ation factor (g3t), and then by the housing factor (g»¢). Note,
however, that these group factors are trained on the aggregate bond market returns rather than
returns on bonds with a speci ¢ maturity. Bianchi, Buchner, and Tamoni (2021) consider more
categories of macro variables and nd that variables related to the stock and labor market (the
output & income and orders & inventories) are more important for the short-end (long-end) of the

yield curve.



IA.B.1.2 Sample Period 1952{2014

The full sample used in this study is 1964{2014. However, it is known that the relationship between
interest rate and real activity changed signi cantly around 1964. This raises one concern about the
robustness of our evidence for the predictive power of git,« = 1,2,3 and Gt based on the 1964{2014
sample: If we extend the sample to several years earlier, that may signi cantly change the results.
To address this concern, we reexamine the predictive power of these macro factors using the sample
extended to 1952, the year from which the data coverage of the original Fama-Bliss yields starts.'A-
However, some macro series, especially those related to housing, are not available going back that
far; thus, we reconstruct the employment factor only in this robustness check, and denote the factor
constructed in-sample by g;; and its out-of-sample version by g;;. Recall from Section 3 that the
\labor" group includes 32 series. As two of these series are no longer available when the sample
extends back to 1952, g, or gy, is constructed using the remaining 30 macro series.

Results from in-sample regressions, reported in panel B1 of Table 1A.B2, indicate that the
predictive power of the employment factor is robust to the extended sample. Comparing panels Al
and B1, we see that the predictive power of g, is slightly weaker than that of g1t in terms of the
magnitude of regression coe cients or R? value but the coe cient on g, has greater ¢-value than
that on g1, regardless of the bond maturity.

In the out-of-sample tests, the training period is 20 years, which is close to the 21-year period
length adopted in our full-sample (1964{2014) analysis. In other words, the employment factor is
reconstructed every month after December 1971 using Adaptive Lasso within a given group, and the
predictive regression is also reestimated recursively. As before, we consider the following three out-
of-sample statistics: the \ENC-REG" (Ericsson 1992 ), the \ENC-NEW" (Clark and McCracken
2001), and the out-of-sample R-squared \R2,." (Campbell and Thompson 2008) statistics. The
results shown in panel B2 of Table 1A.B2 indicate that g;; has signi cant out-of-sample predictive
power for every bond considered. Additionally, R2,. increases in the bond maturity, ranging from
0.155 for the 2-year bond to 0.169 for the 5-year bond.

Overall, the above results provide evidence that the predictive power of the employment factor

(one main component of the SAGLasso single factor @t) is robust to the longer sample 1952{2014.

IA-2The supplement to Cochrane and Piazzesi (2005), available at http://ww.stanford.edu/~piazzesi/cp.zip,
suggests that Fama-Bliss yield data prior to 1964 is unreliable.



IA.B.2 Spanning Properties of the Group Factors

Having examined the predictive power of the three group factors, we explore, to what extent, each
of the three factors is spanned or unspanned in this subsection.

Recall from Table IA.B1 that git, got, and ¢3¢ all have low correlations with the yield curve
factors. In an untabulate analysis, we nd that the three group factors are not highly correlated
with GRO (growth) and INF (in ation) either, two standard single macro variables used in the
literature. Unsurprisingly, the largest correlation (0.497) occurs between the two in ation factors,
g3t and INF¢. The correlations between INF{ and the other two group factors are 0.237 for gt and
0.144 for go¢. The growth variable GRO has a correlation of -0.013, 0.167, and -0.015 with g1¢, got,
and gst, respectively. These ndings suggest that the three group factors are viable candidates for
unspanned macro variables.

We examine whether the three group factors are spanned by the yield curve, following Section 5.4
that conducts a similar analysis for Gr. That is, for each of the three group factors, we rst regress
the factor on the rst R PCs of the yield curve (PC? g.), where R = 3 or 6; we then evaluate
the regression R? against its distribution implied from a constrained and spanned model; we also
estimate the rst-order correlation of residuals from the regression to see if the residuals are serially
uncorrelated. The model used here to generate distributions of R? is model CSM (3, 6)group, Whose
state vector includes three yield curve factors (the rst three PCs) and three macro factors, git, got,
and gs;. The estimation of the model is done under the assumption that the three macro factors
are measured either with or without errors.

Table 1A.B3 reports the regression results for each of the group factors with R = 3 (panel A)
or 6 (panel B). Column 2 indicates whether the three macro variables are assumed to be measured
with errors in the estimation of model. Columns 3 (panel A) and 5 (panel B) show the regression
RZ?s, and in brackets beneath are reported 95% con dence intervals based on 5,000 arti cial samples
simulated from model CSM (3, 6)group. Columns 4 (panel A) and 6 (panel B) report the rst-order
serial correlation of regression residuals. Clearly, the regression R? is outside of the 95% con dence
intervals for each of the group factors in either panel. Moreover, even the smallest estimated

rst-order serial correlation is around 90%, suggesting that much of the persistent component is

mistakenly treated as white-noise shocks. All of the evidence indicates that the three SAGLasso



group macro factors {git,1 < i < 3} are not spanned by the yield curve factors.

IA.B.3 Comparison with the Ludvigson and Ng (2009) Factor

The LNO9 single factor, constructed through dynamic factor analysis and BIC-based stepwise pre-
dictive regression, is ﬁt = (ﬁlt, ﬁft, ﬁZt, ﬁgt, ﬁ4t, ﬁst), the particular polynomial function of LNO9’s
eight dynamic factors that minimizes the BIC over the sample period 1964{2003. However, using
our panel of 131 \real-time" macro series over 1964{2014, we nd that the selected subset includes
ﬁt = (flt,fft,ﬁm,135t,13§t,ﬁ8t,1382t),"°‘-3 whose R? value is 0.256, higher than 0.214 of ﬁt’s.
Hence, we let f]\\fin (the modi ed LN factor) be ﬁt in our empirical analysis.

Although both G and LN are extracted from the same set of 131 macro series, they di er in
several aspects. First, whereas LN includes all 131 series and squares and cubes of these macro
variables, G is a linear combination of 19 series and some of their lagged variables, and consists
of three easy-to-interpret macro group factors. Second, in terms of economic interpretation, G
includes a housing factor that contributes little to fﬁm, whose important components are the
\real activity" (highly correlated with measures of employment and production such as IP growth),
\in ation," and \stock market" factors. Also, G includes no variables from the \bond and FX"
group and thus is much less correlated with the yield curve than LN is. Lastly, by construction
G takes into account the dynamic response of bond risk premia to macroeconomic innovations. In
contrast, information on term premia does not enter LN until the last step of its construction.

Panel A of Table IA.B4 reports the prediction results based on f]\\fin for the full sample. Results
from the in-sample analysis reported in panel Al show that fj\\fin is signi cant, regardless of the
bond maturity, and that the R? increases in the bond maturity, ranging from 0.168 for the 2-year
bond to 0.250 for the 5-year bond. Recall from panel Al of Table 1 that the R? from regressions on
Gt ranges from 0.352 for the 2-year bond to 0.392 for the 5-year bond. The di erence between this
R? and that of f]\\fin is 0.18, 0.16, 0.15, and 0.14 for the 2-, 3-, 4-, and 5-year bonds, respectively.
These results indicate that G; has a greater predictive power than LN :1 for excess bond returns.'A4
Results from the out-of-sample analysis also support this conclusion, as can be seen from evidence

shown in panel A2 of Table IA.B4 for f]\\f;n and that in panel A of Table 2 for @t. To summarize,

IA3The variable F is also selected by Ludvigson and Ng (2011), who consider the sample period 1964{2008.
IA4This nding is robust in the post-1984 sample period (untabulated).



even though Gy is linear and much more parsimonious than L/\N;n the former predictor shows

stronger predictive ability than the latter in both in-sample and out-of-sample analyses.



be mitigated straightforwardly, however, since in practice it is easier to make an adjustment for
publication lags than to gure out preliminary macro data releases and adjust for data revisions.
Note that the main nding of this subsection is consistent with Ghysels, Horan, and Moench
(2018), who document that using revised macro series in ates the predictive power of macro vari-
ables. However, while they focus on a particular macro variable | \total non-farm payroll employ-
ment" (#33 on our list of 131 series) J and nd that both data revisions and publication lags are
highly important, we examine the impact of these two elements on a large panel of macro time
series and nd that the predictive power of the SAGLasso (aggregate) macro variable is robust
to the use of vintage data. Namely, the importance of revision/delay biases depends on speci ¢
macro series, especially given that variable #33 itself is not included in G (see Table A.1 in the
paper). This implication is consistent with Ghysels et al. (2018) too. In a robustness analysis, they
consider the Chicago Fed National Activity Index (an unsmoothed version of macro variable GRO)
and nd that the combined e ect of publication lags and data revisions on these two aggregate
macro variables is small. Also, Barillas (2012) nds that the bond return predictability is robust to
the use of real time series for 16 macro variables (7 in ation and 9 real growth measures) considered

in his study.

IA.B.5 In-Sample Spanning Tests

This subsection tests the spanning hypotheses, H§! and H§?2, by examining the incremental pre-
dictive power of G over the yield curve. As before, we focus mainly on the test statistics based on
the HH or NW standard errors in the discussion of test results that follows.

Table IA.B5 presents the results based on the full sample. Results from regressions on PCY 3.,
reported in columns 2{5, indicate that only PC3.; is signi cant and that the R? ranges from 0.156
for the 3-year bond to 0.194 for the 5-year bond. Results from each of the above regressions
augmented with G, reported in columns 6{9, show that G is signi cant regardless of the bond
maturity. The incremental R-squared due to G, R? ranges from 0.243 for the 5-year bond to
0.262 for the 3-year bond. These results provide strong evidence against H3?.

Results from regressions on PC 1 s, shown in columns 10 through 13, indicate that in addition

to PC 2., the higher-order PC4.¢ and PCs. are also signi cant for most bonds.'A> The R? ranges

A5 nternet Appendix IA.A presents empirical evidence that the PCA of the observed yields is unable to e ectively



from 0.221 for the 2-year bond to 0.255 for the 4-year bond. Augmenting these regressions with
ét yields a R? ranging from 0.232 for the 5-year bond (column 17) to 0.253 for the 3-year bond
(column 15). Importantly, @t is signi cantly di erent from zero regardless of the bond maturity
and standard errors used, indicating a rejection of HOSZ. In addition, PC .t and PC 4.t become less
signi cant (and insigni cant for the 2- and 3-year bonds) in the presence of Gr.

The results for the post-1984 sample, reported in Table 1A.B6, are qualitatively the same as
those for the full sample. Particularly, Gy is signi cant, regardless of the bond maturity and
standard errors used, conditional on either PC{ 3 (columns 6{9) or PC; 5y (columns 14{17);

namely, H§! and H§?

are strongly rejected by the post-1984 sample too. Compared with its
counterparts for the full sample (Table 1A.B5), R? due to Gy is actually higher except for the
2-year bond. For instance, R? from regression tests of Hg! for the 5-year bond is 0.297 for the
post-1984 sample (column 7) and 0.243 for the full sample (column 9 in Table 1A.B5). Regarding
the impact of PCs in the presence of Gy, PC :¢ (PC3.p) remains signi cant for the 2- and 5-year
bonds (10-year bond) in the tests of H§t. For regression tests of H$? (columns 14{17), PC 1. is
signi cant regardless of the bond maturity, PC . is signi cant for the 7- and 10-year bonds, and
PC s for the 2-year bond only.

An earlier version of the paper also considers test statistics based on Hodrick 1B standard
errors. We nd that G remains signi cant regardless of the bond maturity, whereas some of the
PCs become insigni cant. For instance, PC3.. remains signi cant only for the 4- and 5-year bonds
and is subsumed by Gt regardless of the bond maturity.

In summary, when factor G is used as the macro-based return predictor, our in-sample test

results show that this new macro variable has predictive power above and beyond the contempo-

raneous Yield curve or yield dynamics, and thereby reject both Spanning Hypotheses | and 1.

IA.B.6 Tests Using Macro Variables with Di erent Lags

So far the SAGLasso algorithm has been implemented using 131 macro variables along with six
of their lags. In this subsection we address the following two questions: (1) Are lags of macro

variables are essential to maintain the predictive performance as documented in Section 4, given

disentangle higher-order PCs from noise in yields. Filtered higher-order PCs (PC4 s.t) contain more information
about bond risk premia than higher-order observed PCs (PC3 s.t).



that 21 constituent variables (out of 30) of G are lagged? (2) If so, what is the optimal number of
lags to be included in our supervised learning?

These are nontrivial questions as a panel of macro data with no lags or a small number of
lags has a denser structure and might deliver better out-of-sample performance given the limited
length of the training period. To see this, recall that tuning parameters are selected using cross-
validations in the SAGLasso algorithm (see Appendix C). Therefore, as we include more and more
lags, the estimation process is inevitably subject to more \noise", which could overweigh bene ts
of incorporating more historical information in the construction of the SAGLasso factor.

In what follows, we repeat the analysis in Section 4.1 using 131 macro variables along with N
of their lags, where N =0,3,9,12. To be more speci c, for each value of N, we rst reconstruct
the SAGLasso factor following the procedures described in Appendix C and then examine the
predictive power of the reconstructed SAGLasso factor.

Figure 1A.B1 depicts the unconditional predictive power of the SAGLasso factor constructed
using the macro data with N = 0,3,6,9,12. For brevity, we report the results for 2-year and
5-year bonds only. Panel A shows that including lags clearly enhances the in-sample predictive
power of the SAGLasso macro factor."*® However, using more lags does not necessarily raise the
R? value: it is the highest with N = 3 for the 2-year bond and with N, = 6 for the 5-year bond.

As discussed above, including more than 6 lags may induce nontrivial sampling variability
of the SAGLasso estimates that is su ciently large to o set the gains from using more data.
This conjecture is con rmed by the results for the out-of-sample R? shown in Panel B. Since the
SAGLasso factor is estimated recursively (with a rolling 20-year window) in the out-of-sample
analysis, we face greater uncertainty compared to the in-sample estimation. As a result, we nd
that the SAGLasso factor with Ny = 9 or 12 hardly outperforms the SAGLasso factor with Ny =0
(no lag) in terms of the out-of-sample R?.

Overall, the results shown in Figure 1A.B1 suggest that the SAGLasso factor constructed using
the 131 macro variables along with 3 or 6 of their lags has the best performance in both the in-sample

and out-of-sample predictions. This nding re ects a trade-o between including more information

IA-6Note that including lags into the SAGLasso algorithm does not simply lead to an expansion in the set of selected
macro variables. Instead, the coe cients of some previously selected (contemporaneous) variables are shrunk to zero,
\crowded out™ by more powerful lagged variables. For example, 29 macro variables are selected with N = 0, but
only 9 of them have nonzero coe cients with N = 3.
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in the supervised learning and imposing a denser data structure to enhance the estimation stability.
While the baseline SAGLasso factor (with N = 6) seems to capture more information on long-term
bond premiums, the alternative SAGLasso factor with N = 3 outperforms for short-term bonds.
Next, we examine whether or not the choice of lag length a ects our inferences with respect to
Spanning Hypotheses | and I1. We test these two hypotheses using the above SAGLasso factor with
di erent values of N and report the test results in panels A and B of Table IA.B7, respectively.
As before, the test statistics used include the Hansen-Hodrick one, the Newey-West statistic, and
R? (the incremental in-sample R?) for the in-sample tests, as well as the ENC-REG statistic,
the ENC-NEW statistic, and  RZ2,, (the incremental out-of-sample R?). Note that both of the
spanning hypotheses are overwhelmingly rejected in both the in-sample and out-of-sample tests,
regardless of the value of N considered. In particular, the two hypotheses are strongly rejected
when no lags (V. = 0) are used in the construction of the SAGLasso factor.

Finally, we perform the nite-sample analysis based on the SAGLasso factor with N = 3.



form for YTSMs, the JLS canonical form de nes the most general admissible Gaussian MTSM for
a given dimension of the state vector.
Denote the state vector satisfying the JLS canonical form is denoted by X;. Its Q-measure

dynamics and the resulting bond pricing formula are

e = 13 +1- X, (IA.C1)
X, = QX 1+ 8 (IA.C2)
" = An( 9+ Ba( X (1A.C3)

where rg denotes the long-run mean of the short rate under Q,'A- 1 is a vector of ones, XQ — 1 has
the real Jordan form determined by the eigenvalue vector 4%, and  is lower triangular. Under
this representation, $ ={19,r], .} governs X,’s Q-dynamics and thus fully determines bond

pricing. Coe cients A,, and B,, are given by

By = % (I - xQO) 1 (I —( xQO)m) (3
1 m 1
Am =T —%ZBiO X XOBi.

While the state vector X; de nes the minimum number of parameters shaping the risk-neutral
distribution of bond yields, it keeps silent about the role of macro factors F; in bond pricing. Unless
the macro-unspanning restrictions, as speci ed in Eq. (12), are imposed, Fy are included in MTSMs

as pricing factors, i.e., there is a linear mapping between F; and X, as follows:
Fy= Af + BeX; .

For ease of notation, in the discussion that follows in this this subsection, we drop the sub-
script/superscript M from Y;M and {AmBm 1} Where M denotes the maturities of zero yields to

be considered. Suppose that the yield-curve factors in X; are de ned by a full-rank loading matrix

A-7In the JSZ canonical form there is no constant term in the short-rate equation (IA.C1). Instead, there is a
constant term in the transition equation:

X = Mx@"_ XQXt 1+ xEtQ»

where 1,2 = (u%,0: (N 1))0. However, as long as X, is stationary under the risk-neutral measure and the rst
element of < is non-repeated, v§ and u§ are interchangeable in de ning the canonical form: r§ = —u§ /72
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WL e RE L ie., Py = WL Y. It follows that the latent state vector X, can be rotated to X¢'A8

Xt= o+ 11X,
where
WLA W B
0= , 1—
Af Bf

The resultant bond-pricing coe cients for the rotated state vector X; are
Bm — 1 1OBm7

This leads to a closed-form expression for the probability density function of observed yields con-
ditional on Xy, which completes the maximum likelihood estimation.

Note that {Am, Bm}, de ned in Eq. (8), dependon & = {773, A¢, Bf, x} D . Assuch,
adding macro factors to DTSMs allows for greater exibility in tting the conditional distribution
of bond yields, as evidenced by the (M — £)(N + 1) additional free parameters in MTSMs.!A-°

Even if we ignore the additional exibility o ered by Ft, it is preferable to factorize the condi-
tional likelihood function in terms of X = (P}, I), as opposed to latent factors X, . First, if the
yield portfolios as represented by P; are assumed to be priced perfectly (JSZ; JPS), the P-measure
conditional density of state variables, [(X¢| Xt 1,/&, )F(’, x), can be assessed with standard linear
projection; JSZ show that the OLS leads to ML estimators of {u%, £}. Second, even if we allow
all yields to be measured with error, an OLS regression of X¢ (= X+ ) provides fairly reasonable

starting values in the estimation of {uf, &, «}.

IA.C.2 Selection of MTSMs

In Sections 1A.G.2 and 1A.G.3 of the paper, we follow JPS and conduct a large-scale search for the
best set of zero restrictions on risk premium parameters in constrained models CSM (£, N)) and

CUSM (£, N). This section provides details of this analysis.

IA-8The invariant transformation from X, to X; calls for the loading matrix .. As the number of yield factors
L < 5 in models considered in Sections 5.2 and IA.G, Wy is estimated based on model YTSM (5) (see Internet
Appendix 1A.A for details). Unreported results show that the rst three rows of W5 are almost identical to those of
Ws (as well as the loading matrix implied from model YTSM (3)), but there is substantial di erence in the remaining
rows.

IA-9Therefore, model SM (£, ) has 2.5N2 + 3.5N — N'L — £ + 2 parameters in total to estimate.
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Recall from Section IA.G.1 that CSM (£, ) and CUSM (£, ) denote N -factor constrained,
spanned and unspanned MTSMs, respectively, where the underlying state vector Xy = (PC1 ., ét)

and PC; | = (PC4,...,PC_) denotes the rst £ PCs of bond yields. The one-period risk premium
is as speci ed in Eq. (13):

t=Xdo+MXe = Ao+ A1-(PC1 L, Gy,

where risk premium parameters Ao and \; are an N-dimensional vector and an A/ x N' matrix,

respectively. In the discussion below, we focus on the selection of spanned models CSM (£, N).



JPS’s nding. Du ee (2010) also documents that there are two factors driving the variation in
risk premium and presents evidence that this is a robust property of models with the Sharpe ratio
constraints. These ndings in turn help explain why the restrictions placed on )y and A; make
model-implied Sharpe ratios consistent with ones observed in data.

Note that while all three models, CSM (N-1, V) with 4 < A/ < 6, imply non-zero compensation



where Y{° denotes the time-t¢ observed yields of k zero-coupon bonds with maturities M = {my, ..., mg},
Uwm is a k x 3 matrix with columns equal to the rst three eigenvectors of the variance matrix of
Y, and the diagonal matrix e; represents tting errors.

We aim to show that the parameter restrictions speci ed in Eqg. (IA.D5) have a close a nity to
the restrictions required for the MTSM in Section 5.1 to satisfy the hypothesis that macro variables
have no predictive power for excess bond returns unconditionally (under the P-measure). Following
Du ee (2007), we refer to this hypothesis as the \general™ null hypothesis (GNH). To proceed, we

rst introduce such restrictions, termed \macro-independence restrictions in this study.

IA.D.2 \Macro-Independence' Restrictions

Consider the MTSM in Section 5.1. Given that the expected excess return on an m-period bond

fromttot+jis

B (mg{'lj) = constant + ¢l X, (1A.D6)
where ¢mj = mBjy, —(m —j)By j( Y —jB],

the GNH implies that the last A-£ columns of the model-implied matrix m;j are entirely zero,
regardless of bond maturity m or return horizon j. How to implement such restrictions in the
model depends on j. Recall that, in our empirical analysis, predictive regressions use annual excess
returns sampled at the monthly frequency, while MTSMs are estimated with monthly observations.

Let A1 = [A1p, Ar¢] in Eq. (9). If j = 1 (month), then setting A1¢ to zero prevents macro factors
from a ecting expected one-period excess returns. Without loss of generality, we allow all £ yield

curve factors P; to drive variations in bond risk premia. As a result,
Yma1=—(m—1)Bh 1A = —(m—1)B} 1 [Mp,On (v L] - (IA.D7)

Under this speci cation, Et (rzt.t+1) is orthogonal to the macro state vector F;. However, F; can still
a ect longer-horizon (j > 1) excess returns because future monthly returns, {Ex (rec+i-t+i+1)}i 1,
are not orthogonal to F;. For instance, note that Fi+q (rzi+1:t+2) IS determined by Pi+q1 and
Et(Pr+1) depends on F;. Consequently, Fy contains information about future excess annual returns.

As iswhen j > 1to ensure the state variables determining term premia to vary inde-
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pendently of the macro factors, we specify the following P-measure dynamics of Xj:

Y= Pr| _ K . b 0L P Y (1A.D8)
Fy 1 On L L e Fo1
That is, the variation in F; is independent of expected monthly bond returns at all leads and lags;
thus, even for annual excess returns, the last N-£ columns of ¢m.1» are constrained to be zero.
Egs. (IA.D7) and (IA.D8) together lead to the following conditions, termed \macro-independence™

restrictions and denoted by H)"', for the model to satisfy the GNH:
H'": f=0, %= f¢=0 and FH= Fr (1A.D9)

Let MIM (£, N) denote the model subject to these restrictions. Unless speci ed otherwise, we
focus on MTSMs with /' = £ + 1 and F; = Gt in the analysis that follows. For instance, model

MIM (3, 4) is used below to conduct the nite-sample inference about the GNH.

IA.D.3 VAR-based DGPs and Tests of the GNH

Note that the parameter restrictions speci ed in Eq. (IA.D5) are very close to the \macro-independence
restrictions given in Eq. (IA.D9) under model MIM (3,4). The only fundamental di erence between
the VAR-based model in Egs. (IA.D4) and (IA.D5) and model MIM (3, 4) is that the former does
not rely on the Du e and Kan (1996) restrictions for an a ne mapping from bond yields to the
yield-curve factors. However, empirically this di erence is expected to have little impact on the
dynamics of expected excess returns, as matrix Uy obtained from the PCA does not signi cantly
deviate from the loading matrix By in Eq. (11)."A1 Therefore, like model MIM (3, 4), the above
VAR-based model implies that term premia are time-varying and driven by yield PCs only; that is,
by construction, the macro factors £ have no predictive power for future yields and bond returns.
As such, the VAR-based model in Egs. (IA.D4) and (IA.D5) satis es the GNH rather than Hg?
stated in Section 2.2. Put di erently, as macro risks are not priced at all in this VAR-based DGP,
it is not suitable for conducting tests of evidence for unspanned macro risks.

To further illustrate this point, we generate bootstrap samples using the VAR-based model and

IA-1170 see this, another equivalent approach to estimating Eq. (11) is regressing the bond yields on yield PCs. While
the Du e-Kan restrictions are not imposed in this estimation (unless the number of factors equals & — 1), the small
magnitude of measurement errors ensures that the OLS-implied loading matrix for PC1 3.¢ is very close to Bm if
the term structure is truly described by a no-arbitrage dynamic term structure model (Du ee 2010a).
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investigate the properties of regression statistics under the same DGP. To proceed, letting F; be
the single SAGLasso factor Gt in the model, we estimate fip, i, pp, £, p, and ¢ with MLE
as in Section 5. Next, we generate bootstrap samples from Egs. (IA.D4) and (IA.D5) and use a
residual bootstrap to resample the PCs and SAGLasso factor based on Eq. (IA.D5). We construct

bootstrapped yields, Y}, as follows:
Y =Um-PCY g+,

where PC% 3.t denotes the vector of three bootstrapped PCs. Following BH, n? is generated from
MV N(0,0°I), where o is set to the sample standard deviation of the tting errors & (pooled

across maturities)."™12 Finally, excess bond returns are calculated using bootstrapped yields.

IA.D.4 Finite Sample Analysis Using the VAR-based DGP

What if the above VAR bootstrap design is used to examine the nite-sample properties of the
regression in Eq. (1) in tests of H31? To answer this question, we examine nite-sample distributions
of regression statistics in testing H3!:

miltzfl)z = o+ ByPCY 3¢ + ByGr + err12. (1A.D10)

Table IA.D1 reports the results. A comparison of panels A1{B2 of the table with their counter-
parts in Table 3 based on model SM (2, 3) reveals that the VAR-based bootstrap still understates
the size distortions in the regression in Eqg. (IA.D10). Indeed, the 5% critical values implied by
model SM (2, 3) are more than twice as great as those implied by the VAR-based model for most
statistics/maturities. The discrepancy between these two DGPs is substantial in both in-sample
and out-of-sample analyses and especially glaring in the coe cients of determination. For instance,
panel Al of Table 1A.D1 indicates that the upper bound of the 95% con dence interval for R?
is around 3.3%, but this upper bound is merely comparable to the median of the SM (2, 3)-implied
distributions. More precisely, the VAR-based 5% critical value has a true size of up to 46%, imply-
ing that the nite-sample test based on the VAR bootstrap design would reject the null more than
eight times as often as it should.

For completeness, panels A3{B4 of Table IA.D1 report the nite-sample distributions implied

IA-12\We nd that replacing these simulated measurement errors with the ones bootstrapped from the actual (maturity-
speci c¢) tting errors has only marginal impact on the nite-sample distributions.
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by the macro-independent model MIM (3,4). As expected, they closely resemble their VAR-based
counterparts illustrated in panels A1{B2 of the table. Namely, both MIM (3, 4) and the VAR-based
DGP di er sharply from spanned MTSMs and lead to in ated rejection rates in tests of HS?.

To summarize, in our case, nite-sample tests of H$! using the VAR-based DGP is actually
oversized and thus biased against the null hypothesis. In contrast, the spanned MTSM speci ed in

Section 5.2.2 provides a more relevant and robust test of H3t in nite sample analysis.

IA.E Ibragimov-Muller Tests of Spanning Hypotheses | and 11

This section conducts an alternative and robust test of H$! and Hg2, drawing an inference about
the hypotheses based on the test developed by Ibragimov and Muller (2010; IM hereinafter).

It is known that standard heteroscedasticity and autocorrelation consistent (HAC) corrections
perform poorly in small samples. The IM test can improve the performance of these procedures by
not relying on consistency of the given variance estimator. In IM’s approach, regression coe cients
[ are estimated ¢ times on ¢ subsets of the whole sample. IM prove that, for each coe cient
i, the t-statistic computed from the ¢ estimates of 3; has approximately the same distribution
as a standard t-statistic computed from independent and zero-mean Gaussian variables. Muller
(2014a) nds that the IM test has outstanding size and power properties in the presence of strongly
autocorrelated of regression disturbances. Muller (2014b) further notes that the IM test is an
\attractive choice" for predictive regression problem and is also robust to structural breaks.

Following Muller (2014a), we divide the whole sample into ¢ nonoverlapping consecutive blocks
of (approximately) equal length, with ¢ = 8 or 16. Table IA.E1 reports the p-values of the resultant
t-tests of both H§! and Hg?, for both the full and post-1984 samples. As the IM test assumes
the independence of blocks, we insert 12-month gaps between adjacent blocks in the full-sample
analysis. As such, the regression coe cients estimated from di erent blocks of data are arguably
independent from each other. For brevity, we report the testing results for the average excess bond
return only, which is over two- through four-year (ten-year) maturities for the 1964{2014 (1985{
2014) sample, as maturity-speci c estimates for each of ¢ sample subsets are rather noisy. While
the evidence on PC9.; (the \slope" factor) is consist with BH, PC?.; (the \level" factor) becomes

insigni cant in the post-1984 sample when Z; = Gt (the SAGLasso factor). However, even the
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strong evidence for the predictive power of PC3., is tempered when we consider HE?: its p-value
skyrockets to 0.33 and 0.38 in the full and post-1984 samples, respectively. In contrast, the p-values
of Gt are uniformly lower than 0.05 for both H$* and H$2, regardless of the choice of g.

Overall, the IM tests indicate that among the ve yield curve factors and the macro factor Gt,

the latter is the only robust predictor of future excess bond returns at the 5% signi cance level.

IA.F An Alternative Version of Spanning Hypothesis |11

In the tests of H35? conducted so far, the yield-curve factors used in the hypothesis are the rst ve
principal components (PCs) of the noise-uncontaminated yield curve. As mentioned in Section 2.2,
including the higher-order PCs is motivated by the notion of hidden factors a la Du ee (2011).
This section introduces and tests another version of H$? that is based on an alternative set of the
yield-curve factors, the \cycle™ factor (3) of Cieslak and Povala (2015). As noted in Cieslak and
Povala (2015), the cycle factor is spanned (see also Cieslak 2018), as well as analogous to the single
risk premium factor in Du ee (2011) that contains a hidden component.

Cieslak and Povala (2015) propose an illustrative three-factor dynamic term-structure model
(DTSM) in which E} corresponds to a single \risk premium factor" denoted by z¢, where x captures
all of forecastable variation in one-year expected excess returns for bonds of all maturities. While the
Cochrane and Piazzesi (2005) factor (C/’I\D) plays a similar role in the DTSM proposed in Cochrane
and Piazzesi (2008), Cieslak and Povala (2015) demonstrate that their methodology (based on
linear projections of yields on trend in ation) is more e ective in recovering the variation in risk
premiums from noise-contaminated yields and, as a result, E]\f subsumes CP in predicting excess
bond returns. In other words, x¢ is analogous to Du ee (2011)’s single risk premium factor, RF,
that determines the one-month-ahead risk premia on all bonds."*12 |n particular, z; contains a
hidden component that cannot be detected using the cross-section of yields and that needs to be
inferred, say, with a proxy for trend in ation as done in Cieslak and Povala (2015). In this sense, ¢
can be regarded as an \annual” version of RP; and, accordingly, E} maps to the smoothed estimate
of RP; obtained in Du ee (2011). That is, as an estimate of x, Q summarizes all information on

one-year-ahead risk premia.

IA-13The state vector underlying the ve-factor DTSM in Du ee (2011) consists of the rst ve PCs of yield innovations.
As a result, RP; is a linear combination of these ve PCs.
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S2

It follows that we can formulate an alternative version of Hy< using E} as the conditioning

variable:

H§‘2;°f: The SAGLasso macro factor G has no additional predictive power for bond risk

premia in the presence of Ef

HSZ;cf

One way to test H is based on the following predictive regression of excess bond returns:

(12n) _ 0
TTpgr1p = @ F Be



other. It follows that the P-measure dynamics of the state variables are

" 0 0 ¢ o 0 0 oy
0 ¢F 0 of 0 or 0 o
X¢ = b + " Ul X 1+ " Ul (IA.F13)
0 0 ¢f o 0 0 oxx Oxg
_¢§ ¢gr ¢gx ¢gpg_ |Ox  Ogr Ogx Ogg

Note that the parameter d>)P(g is important as it determines whether G¢ has unconditional predictive
power for excess bond returns; if gbﬁg = 0, the model in Eqg. (IA.F13) degenerates into conformity
with Du ee (2007)’s GNH. Under the speci cation in Eg. (IA.F12), Gt contains no conditional
predictive power when zy is controlled for, regardless of the value of ¢§g.

As, by de nition, the risk-premium factor x; does not a ect the short rate, we specify the

following equation to complete the model:

Tt = 50 + 5!’7{ +) Tt, (|AF14)

where r¢ denotes the one-year yield with 6, >0and § > 0.

The MTSM as represented by Egs. (IA.F12){(1A.F14) is estimated using zero yields with matu-
rities of one through ten years over the full sample period 1971.11{2014.12 (matching the beginning
of the sample used in Cieslak and Povala 2015). The estimated model is then used to generate
5,000 bootstrapped data samples.

Table IA.F1 summarizes the nite-sample properties of the six test statistics used that are based
on the 5,000 bootstrapped data samples, including the 95th percentile of the bootstrap distribution
(underlined as the 5% critical value in the table) and the p-value (in angle brackets) for each test
statistic. A comparison of these nite-sample critical values with those (under H§?2) reported in
panels B3 and B4 of Table 3 reveals that the small-sample bias is less severe in the regression
in Eq. (IA.F11) than that in Eq. (1) speci ed for testing H§2. Consistent with the conclusion
drawn from their asymptotic distributions, the bootstrap distributions of all statistics shown in
Table IA.F1 overwhelmingly reject the null hypothesis HOSZ;Cf J that @t contains no predictive
power conditioned on Eft I at the 5% signi cance level, with the only exception of the ENC-REG
test for the 7-year bond for which the small-sample p-value is 6.6%.
ng;cf

To summarize, the above results of tests of the spanning hypothesis provide further
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evidence that the SAGLasso macro factor has signi cant, additional predictive power for excess

bond returns conditioning on the yield curve information.

IA.G Unspanning Tests and Applications of Unspanned Models

This section focuses on unspanned MTSMs with the SAGLasso factor as the sole macro risk factor.
We formally describe the macro-unspanning hypothesis (MUH) in Section 5.3.1 and then investigate
its statistical signi cance as well as its economic importance in Sections 5.3.2 through 1A.G.2.
Lastly, Section 1A.G.3 quanti es the information content of the SAGLasso factor.

While the above test results demonstrate the empirical relevance of G as an unspanned macro
risk, the tests of the MUH per se are more interesting statistically than economically. On the one
hand, to be statistically legitimate, the MUH has to be formulated as Eq. (12). On the other hand,
the consensus is that, in general, macro variables hold greater promise in helping to improve a
term structure model’s time-series accuracy than its goodness-of- t (e.g., Du ee (2011) nds that
a YTSM (5) is adequate for producing tting errors of 6 bps). Given this insight, a more relevant
question to ask is whether using Gt as a pricing factor has any economic bene ts. Put di erently,
does an unspanned MTSM with G as its sole macro factor provide any added economic value over
an otherwise spanned model? As shown below, the answer to these questions depends on whether

MTSMs are subject to certain constraints on their model-implied Sharpe ratios.

IA.G.1 Model-Implied Sharpe Ratios

One issue not addressed in the likelihood-ratio tests considered in Section 5.3.2 (as well as in
BR) is that the MTSMs under scrutiny impose no constraints on the Sharpe ratio (SR) of bond
returns and that such \unconstrained” models may imply unrealistic SRs, as noted in Du ee
(2010) and Joslin, Singleton, and Zhu (2011; JSZ hereafter). Speci cally, Du ee documents that
while the empirical benchmark for the unconditional maximum SR is 0.15~0.20, SRs implied from
unconstrained Gaussian dynamic term structure models in his analysis are much higher than the
benchmark.

Untabulated results indicate that among the three spanned MTSMs, {SM (£,N)}3 L s, con-

sidered in panel A of Table 4, even the most \reasonable model-implied sample mean (population
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mean) of conditional maximum SRs is 0.715 (0.825) when SRs are computed with log returns;
the sample mean increases to 1.309 when SRs are computed with simple returns. Consistent with
Du ee (2010), we nd that the model-implied SRs increase with the model dimension. For model
SM (5, 6), the sample mean of the maximum conditional SRs could even be higher than 103 (for
simple returns), an obviously unplausible level."**> As such, though statistically appealing, the
test results presented in panel A of Table 4 are based on misspeci ed models.

One way to ensure that an MTSM generates plausible SRs is to directly impose restrictions on
risk premia, say, that only the level and slope risks be priced (a restriction suggested by Du ee
2010 and implemented in Du ee 2011). Another way is to let the data decide what restrictions are
empirically relevant. We implement the latter approach by following JPS to search for the best zero
restrictions on risk premium parameters {\p, A1} that minimize the Bayesian information criterion
(note that ¢ essentially represents SRs of bond portfolios with payo s that track the pricing
factors). The resultant models selected by this approach (see Internet Appendix IA.C.2) all possess
the following two properties: (a) variations in expected excess bond returns are mainly driven by
two factors and, (b) the SAGLasso factor plays a signi cant role in both term-premium factors.
Importantly, conditional maximum SRs implied by these selected models are generally in line with
those observed empirically. For convenience, the MTSMs with the selected zero restrictions on
{Xo, A1} are referred to as constrained MTSMs and denoted by CSM (£, N) (CUSM (£, N)) for
spanned (unspanned) models, with £ being the number of yield factors included in the model.

With model selections performed on market prices of risk, unspanned and spanned models
are no longer nested, however, and as a result, the LR test-based statistical inference made in
Section 5.3.2 no longer applies. Nonetheless, as shown below we can still measure the economic

values of the macro-unspanning restrictions imposed on constrained models.

IA.G.2 Out-of-Sample Forecasts of Bond Yields

This subsection investigates whether it is bene cial to include the SAGLasso factor as unspanned
by the yield curve in an MTSM. We consider MTSMs with and without the macro-unspanning

restrictions and examine whether these restrictions help to forecast future bond yields. We seek to

IA-15Untabulated results indicate that this problem persists in MTSMs tested by BR, in which our SAGLasso factor
is replaced with (GRO, INF), two macro factors often used in this literature.
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quantify the e ectiveness of these restrictions as forecasting tools.

We focus on six-factor models in this analysis given Du ee’s (2011) argument that ve yield
factors summarize all information (in both the time series and cross section) in the yield curve.
Regardless, including at least ve yield factors instead of three makes it harder to see the importance
of the macro-unspanning restrictions.

The procedure is similar to the out-of-sample analysis in Section 4.4.2. However, since recur-
sive estimation of MTSMs is computationally very costly (especially for models CSM (5,6) and
CUSM (5, 6), which require model selection for the risk premium), our yield forecasts are formed
based on model estimates for the 1985{2007 sample. With the model parameters xed, we re Iter
yield factors using observations up to month ¢ (> 2007.12) and then construct forecasts of the
T-year bond yield in month-(¢ + k), where T'=0.5,1,3,5,7,10 and » = 1,3,6,12 in our empirical
analysis. The out-of-sample (test) period extends from January 2008 to December 2013.

Panel A of Table IA.G1 reports the root mean squared forecast error (RMSE) produced by
unconstrained models SM (5,6) and USM (5,6) for each of 24 combinations of 7" and h. Note
that the models deliver closely comparable forecasting performance, especially at short horizons.
This nding is not surprising, given that they should produce identical yield forecasts if PC1 5 is
assumed to be observed without error (see Section 4.2 of JSZ). Although our assumption that all
bonds (and portfolios) are priced imperfectly prevents us from exploiting the JSZ-type separation
of parameters in the likelihood function, the assumption allows the macro-unspanning restrictions
to a ect the Itering process and thus the model estimations. As indicated by our empirical results,
this impact makes a sizable di erence only at the one-year horizon, where USM (5, 6) provides more
accurate forecasts at the short end of the yield curve but is outperformed by SM (5, 6) at the long
end. Nonetheless, recall that both SM (5, 6) and USM (5, 6) generate unrealistic model-implied SRs.

Panel B of Table IA.G1 shows the results from constrained models CSM (5, 6) and CUSM (5, 6).
They too have similar forecasting performance when the forecast horizon is short with h=1,3
(month). However, when h=6 or 12, CUSM (5, 6) signi cantly outperforms CSM (5, 6), especially
for the 1-year and longer maturity yields. For example, when h=12, the unspanning restrictions
reduce the forecast error by as much as 30 bps for the 3-year yield or 40 bps for the 7-year yield. That
is, the improvements in forecasting performance owing to an unspanned G are much more robust

once certain zero restrictions on ¢ are imposed. To decipher the discrepancy between these two
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pairs of models, we examine the model-implied P-dynamics. As discussed by JPS (in their Section
IV.B), enforcing zero restrictions on their risk premium parameters increases the persistence of
state variables. We con rm this nding by noting that the eigenvalues of £ in CUSM (5, 6) are
substantially larger than their counterparts in CSM (5, 6). This increase prevents variations in risk
premia from completely dominating short-rate expectations and makes model-implied long-dated
yield expectations more reasonable and potentially closer to the \true" yield expectations.

Taking the above ndings together with the LR test results presented in Section 5.3.2, we
conclude that by making the model more parsimonious, the macro-unspanning restrictions do not

hurt the in-sample tting and thus boost the out-of-sample performance.

IA.G.3 Forecastable Variations in Excess Returns Attributable to G;

Having explored the unspanned nature of G¢, we quantify the information content in G¢ within a
(G-based) MTSM. Speci cally, we examine how much of the predictable variations in excess bond
returns can be captured by G; and the potential role of hidden yield factors in the model. Put
di erently, we examine how much information related to the bond risk premium may be lost by
excluding unspanned macro risks from term structure modeling. Note that this exercise represents
an MTSM-based version of the regression analysis conducted in Section IA.B.5.

To this end, we consider the constrained models only (because this exercise requires reasonable
model-implied moments of risk premia), and focus on the unspanned models.'A16 \We implement

models CUSM (£, N) for £ = 3,4,5.

IA.G.3.1 Variance Decomposition for Excess Bond Returns

We discuss the population properties of annual excess bond returns. Results reported in Ta-
ble IA.G2 cover the ve-year bond only as it is closely related to the \in-four-years-for-one-year"

forward premium, as shown in the following:
60 : 12 12
Fr (7“33§+1)2) =FP{ — 4B ( yihy,) + (Et(yt(+4)8) — )> :

But the results for other maturities are broadly similar.

IA-16 Although the macro-unspanning restrictions tend to grant macro factors the \privilege” of retaining their contri-
butions to term premia, this is less of an issue here given that G is constructed after controlling for the yield curve
information. Regardless, the spanned models generate qualitatively similar results (untabulated).
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Consider the model CUSM (3,4) rst. Its model-implied unconditional mean of excess bond
returns is 2.85% (column 2), consistent with its data counterpart of 2.73% (untabulated). The
unconditional variance is 58.25 (column 3) and calculated using the following formula:

11 _ _
ZBB].S 1 0 I0B48

i=0
where ¢ = 60B%, —48B% 2 —12B},.

Var <m§;‘1‘212> = ' Var(Xy)y + 482 + (5% + 42 + 1)0?, (IA.G15)

Among the three terms on the right-hand side (RHS) of Eqg. (IA.G15), the rst one represents the
unconditional variance of the conditional expectation, which quanti es forecastable variation in the
excess bond return; the second term denotes the variance of shocks to the \true™ excess return;
and the last term is the variance of the measurement error’s contribution to the observed return
shocks. Since this last term is typically small in models with N > 3, the predictability of bond
returns is mainly determined by the relative magnitudes of the rst two terms on the RHS.
Furthermore, how much of Var (mﬁfﬂu) is forecastable depends on the conditioning informa-
tion used to forecast. If the state vector X; itself is used, then the full-information R? implied
by CUSM (3,4) is 0.463 (the ratio of 27.01 in column 4 to 58.25), comparable to the regression
R? of 0.439 reported in Table 1A.B6 (column 7). The full-information R?, however, cannot be
achieved when the conditioning variables consist of the rst R (< £) PCs of observed yields only.

An e ective measure for the gap between the information contained in Xt and that in PC? . is

the following ratio of variances of these two relevant forecasts:
R, = VVarCalPey gy

R PVar(XQy
If R = 3, then CUSM (3,4) implies a VR% of 71.4% (Table 1A.G2, column 5 in braces); that is,

R<L. (1A.G16)

almost 30% of the information in Xt is lost if we ignore Gt and rely solely on PC? 3 to infer term
premia.'A-17

What happens if the rst R (< £) PCs of the true yields are used as the conditioning variables?
We can repeat the above analysis using the following variant of Eq. (IA.G16):

0 .
VRg = LV PCL mi)Y (IA.G17)

P Var(Xo)y
Column 6 shows that VR3 is 72.9% (in braces), only slightly greater than VR§ (71.4%). This is

IA17Du ee (2011) uses VRY to evaluate the importance of yield factors hidden from the contemporaneous term
structure and nds that PC? 3. recover only 70% of the information on expected excess returns on the ve-year
bond, consistent with the notion of hidden factors.

27



not surprising as the cross-sectional e ect of PC1 3.t is supposedly large enough to dominate the
measurement error. Obviously, if the conditioning variables are X;, the variance ratio is 100%
(column 9). Notice that because R = £ = 3, results from CUSM (3,4) in columns 7 and 8 are the
same as those in columns 5 and 6.

Given that model CUSM (3, 4) leaves no room for hidden yield factors, we consider the higher-
dimensional models (£ > 3) next. As expected, in such cases the information loss will be higher
(than with £ = 3) if the conditioning information consists of PC{ 3. only. As shown in column
5, VR] is about 71% under CUSM (4,5) and 65% under CUSM (5, 6) (a model that is supposed to
encompass both unspanned yield and macro factors). That is, about one-third of the information
in Xt is lost if only PC9 3. are used to infer term premia under CUSM (5,6). As before, replac-
ing PC% 3t With PCy 3¢ hardly reduces the information lost, with VR3 equal to 71.3% under
CUSM (4,5) and 67.2% under CUSM (5, 6) (column 6). Note from column 7 that including higher-
order PCs of the observed yield curve, PC3., and PC2,, in the conditioning variables hardly helps
to dig up more information on risk premia. For instance, for CUSM (5, 6), VR2 = 65.1% (column
7), only slightly higher than VRS = 64.9% (column 5). Again, this is because the cross-sectional
e ect of higher-order PCs is too small to overwhelm the measurement error.

If we can perfectly infer the hidden factors by extracting information from yield dynamics as well
as in the cross section, we can estimate risk premia more accurately. For instance, under model
CUSM (5,6), VRs = 75.8% (column 8), much higher than either VR? = 65.1% (column 7) or
VR3 = 67.2% (column 6). In fact, this di erence between VRZ and VR5 suggests a wedge between
the information in observed yields and that in \true" yields, whereas there is no evidence for a
similar gap for the rst three PCs, as indicated by columns 5 and 6. Nonetheless, the VR5 of 75.8%
still implies an information loss of almost 25% even in this ideal case. Given that under model
CUSM (5, 6), Gt is not spanned by PC1 ¢+ and that the ve yield factors presumably summarize
all (time-series and cross-sectional) information on the yield side (Du ee 2011), a more reasonable
implication of the result that VRs = 75.8% is the following: The information loss is at least about
one-quarter when Gy is excluded from return predictors, even though they include PC1 5.

We use the phrase \at least™ for two reasons: First, the variance ratio is computed under the
assumption that PC, s are perfectly observable. In practice, however, econometricians have to

perform Itering analysis to infer PC4 s5t. Du ee (2011) documents that the Kalman Iter recovers
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only two-thirds of the information in the true state vector for monthly excess returns (and about
82% of that for annual excess returns in an earlier version of the paper). In contrast, measurement
error has little impact on factor G;. Second, the period 1985{2007 sample is special in the sense
that the fraction of the total variance attributable to macro-driven variations is particularly low. If
the estimation sample is extended to either 1964 or 2014, the model-implied variance ratio would
drop below 67% (untabulated). Once these two facts are taken into account, the results from model-
based risk premium decomposition are expected to be close to the test results of H§? (columns
14{17 in Table 1A.B6) | namely, with respect to the state vector X; = (PC1 s:t, Gt), the SAGLasso
factor accounts for almost half of the predictable variations in excess bond returns.

It is worth emphasizing that risk premium accounting based on variance ratios is analogous
to the variance decomposition (in the context of reduced-form VARS), of which the results are
sensitive to the order of state factors chosen for identi cation. The projection of Gy on PC1 .t in
VR maximizes the explanatory power of yield PCs (Bikbov and Chernov 2010). This point can
be illustrated by changing the order of state factors and calculating the following variance ratio:

_ Var(Xe| X7y
VR34g = VTS AT (1A.G18)

where Xt"H = (PC1 3:t,Gt). Results in column 9 indicate that under CUSM (5, 6), the rst three

PCs plus the SAGLasso factor capture 97.9% of forecastable variation in excess bond returns.
Although this nding does not necessarily mean that hidden factors are unimportant in return
prediction in this case, it does imply that, compared to ignoring hidden yield factors (as shown
in column 9), excluding unspanned macro risks (associated with Gy, as shown in column 8) bears

more serious economic consequences in the inference of term premia.

IA.G.3.2 Calculations of VVariance Ratios

This subsection provides details on the calculations of variance ratios used in Section 1A.G.3.1.
All the calculations are based on MTSMs speci ed in either Section 5.2 (for spanned models) or
Section IA.G (for unspanned ones).

Consider VR, the variance ratio de ned in Eqg. (IA.G16) that focuses on the forecast of excess

bond returns based on the rst R (< £) PCs of observed yields. Recall that by de nition, the rst
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L PCs are given by
PCY |t = WrmY? = WrimAMm + WrimBM Xt + Wrim 7,

where Wgr.m is an R x k loading matrix, which is equal to the transpose of Ur.m in EQ. (IA.D4).
Below subscripts are suppressed for simplicity of notations. It follows that the expectation of the

true state factor X conditioned on these PCs equals
E(X{|PCY ry) = E(Xy) + Var(Xy))BW'Var(PC$ r.) 'PCY ru.
where the variance of PC9? . is
Var(PCY r.) = WB'Var(Xo)BW + WiW's2,
The variance of E(X|PC? R.) is
Var(Xt|PC$ g.) = Var(Xy))BW'Var(PC$ . *WB Var(Xy).

Next, consider VRR, the variance ratio speci ed in Eq. (IA.G17) that concerns the inference of
risk premium based on the rst R PCs of true yields. Recall that these PCs, PC; R:t, constitute

a segment of the state vector X;. Denoting the remaining N-R state factors by Xt”R, we have

PCi1 Rrit
E(Xt|PC;|_ R;t) = , and
EX{®)+CV PC1 Ryt
\V/ c!
Var(Xt]Pcl R;t) = R
c cv it

where V = Var(PC; r.) and C = Cov(X{~,PC1 rut).
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Table 1A.ALl: Properties of Principal Components of Observed Yield Curves

Panel A reports correlations between principal components (PCs) of observed yields and Itered
estimates of yield PCs, denoted by PC? and PCj, respectively, where : = 1,... 5. Population
correlations are computed by simulating 100,000 months of bond yields. The 95% con dence
intervals for the sample correlations, as displayed in parentheses, are derived from 5,000 simu-
lations with the same number of observations as in the data sample. The yield maturities in all
simulations are three months and one through ve years. Panel B reports results from regres-
sions of the return to an n-year zero-coupon bond from month ¢ to month ¢+ 12 less the month-¢
yield on a one-year bond on the rst ve PCs of observed yields, PC$ 5 = (PC3,...,PCZ2). Test
statistics are computed using either the Hansen and Hodrick (1980) GMM covariance estimator
(in parentheses) or the Newey and West (1987) HAC covariance estimator (in brackets). The
row labeled \R? (Table 2)" copies the R? values from regressions of excess returns on Itered
estimates of the rst ve PCs, reported in Table IA.B5 (columns 10 through 13). The R?
measure represents the di erences between R? values in Panel B and R? (Table 2). The last
row in panel B reports the percentage decrease in the R?. The sample spans the period January
1964 to December 2014.

M @ ©) (4) ®) (6) @)

Panel A: Corr(PC;,PC?,) Panel B: Predictive regressions of excess returns
to an n-year zero-coupon bond on PC7_; ,

Bond maturity n

Population Sample 2 3 4 5

PCY, 0.9999 0.9998 3.526 3.031 2.080 0.422
[0.9998 0.9999] (1.116) (0.529) (0.264) (0.043)

[1.266] [0.601]  [0.300] [0.048]

PC3, 0.9905 0.9902 -0.688 -1.330 -2.038 -2.621
[0.9885 0.9916] (-3.650) (-3.674) (-3.961) (-4.105)

[-4.021] [-4.092] [-4.431] [-4.601]

PC3, 0.9612 0.9818 0.784 1.011 1.485 1.688
[0.9787 0.9845] (1.233) (0.920) (1.041) (0.978)

[1.384] [1.034]  [1.156] [1.079]

PC1, 0.7233 0.7595 -1.956 -2.836 -2.798 -0.961
[0.7238 0.7912] (-1.702) (-1.295) (-0.910) (-0.244)

[-1.842] [-1.418] [-1.005] [-0.271]

PCS, 0.2125 0.6107 4.060 10.521  15.004 14.677
[0.5584 0.6581] (2.693) (4.536) (5.636) (4.358)

[2.363] [3.620] [4.074] [3.151]

R? 0.205 0.215 0.241 0.228

R? (Table IA.B5)  0.221 0.233 0.255 0.245

R? -0.016 -0.018 -0.014 -0.017

Percentage decrease in R2  -7.24%  -7.73%  -5.49% -6.94%
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Table 1A.B1: Correlation between Yield Curve and New Macro Factors

This table reports the Pearson correlation coe cients between four newly constructed

macroeconomic factors and ve yield-curve factors.

The four macroeconomic factors

include employment (#1¢), housing (f»¢), in ation (f3), and the aggregate SAGLasso
factor (@t) constructed in Section 4.2. The ve yield curve factors include the rst three
principal components (PCs) of observed bond yields, {PC}y,7 =1,2,3}, and the Itered
higher-order PCs of noise-uncontaminated yields, PC 4.+ and PCs. The sample spans
the period January 1964 to December 2014.

Gt Gt Got Gat PC$, PCY, PCY, PC 4+
Gt 0.620
Gt 0.527 0.577
Gat 0.524 0.467 0.351
PCg, —0.100 —0.226 —0.167 —0.199
PC$, -0352 —0222 —0073 —0270 —0.006
PC3, 0.167 0.239 0.222 0.196 0.018 0.003
PC,: —0.094 —0031 —0.106 0.021  —0.000 0.013 0.044
PCs: —0021 —0.027 —0.282 0.284 0.024 0.008  —0.011 0.092
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Table 1A.B2: Predictive Power of Three SAGLasso Group Factors

The return to an n-year zero-coupon bond from month ¢ to month ¢ + 12 less the month-¢ yield
on a one-year bond is regressed on gi¢, got, and gs¢, the group factors, constructed in Section 4.2,
that represent employment, housing and in ation, respectively, for n = 2,...,5. Results reported
in panel A are based on the January 1964{December 2014 sample, including those from both
univariate (panel Al) and multivariate predictive regressions (panel A2). Results reported in
panel B are based on the January 1952{December 2014 sample, where only the employment
factor is considered (because of data limitations) and constructed using this longer sample (g;;).
In-sample results from regressions on g;; are shown in panel B1 and out-of-sample (OOS) results
based on gy, are reported in panel B2. Test statistics are computed using either the Hansen and
Hodrick (1980) GMM covariance estimator (in parentheses) or the Newey and West (1987) HAC
covariance estimator (in brackets). The ENC-REG statistic denotes the OOS ¢-statistic proposed
by Ericsson (1992), whose 95th percentile of the asymptotic distribution is * = 1.645. The
row labeled \ENC-NEW" reports a variant of the ENC-REG statistic proposed by Clark and
McCracken (2001); their simulation shows that the 95% critical value is around 1.584 for testing
one additional predictor. Both tests share the same null hypothesis that the benchmark model
encompasses the unrestricted model with excess predictors. The R2. statistic denotes the OOS
R? of Campbell and Thompson (2008).

maturity n
(year)

Panel A: Sample period 1964{2014

Panel Al: Univariate Regressions

Panel A2: Multivariate Regressions

g1t 0.828 1.526 2.082 2.568 0.942 1.401 1.744 2.062
(3.796) (4.149) (4.272) (4.545) (2.850) (3.040) (3.038) (3.165)
[4.237] [4.594] [4.689] [4.948] [3.107] [3.301] [3.280] [3.401]
R? 0.220 0.222 0.213 0.211
Jot 0.643 1.162 1.631 2.051 0.722 0.968 1.223 1.461
(2.608) (2.861) (3.178) (3.364) (1.965) (2.052) (2.215) (2.321)
[2.969] [3.249] [3.589] [3.786] [2.141] [2.236] [2.413] [2.528]
R? 0.143 0.139 0.141 0.149
T3¢ 0.723 1.358 1.872 2.222 0.847 1.249 1.574 1.763
(3.096) (3.075) (3.023) (2.875) (2.544) (2.534) (2.486) (2.358)
[3.449] [3.431] [3.380] [3.215] [2.754] [2.748] [2.698] [2.555]
R? 0.168 0.176 0.172 0.173 0.404 0.431 0.420 0.417
Panel B: Sample period 1952{2014
Panel B1: In-Sample Regressions Panel B2: g7, vs. constant (OOS)
i 0.751 1.397 1.932 2.390
(4.161) (4.524) (4.767) (5.084) ENC-REG  3.329 3.600 3.719 3.991
[4.665] [5.025] [5.227] [5.525] ENC-NEW 136.93 13456 127.99 125.341
R? 0.206 0.213 0.211 0.211 R? 0.155 0.164 0.166 0.169

00Ss
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Table 1A.B3: Unspanned Variation in SAGLasso Group Factors

This table reports results from linear projections of each of the three SAGLasso group macro factors
{git,1 < i < 3} onto the rst R principal components (PCs) of the yield curve (PC? g.), where
R = 3 (panel A) or 6 (panel B) and the group factors are the employment (gi1t), housing (g2t),
and in ation (ga) factors. Columns 3 and 5 show the regression R2?s, and in brackets beneath
are reported 95% con dence intervals based on 5,000 arti cial samples simulated from a six-factor
constrained term structure model with spanned macro risks. The state vector of the model, denoted
by CSM (3, 6)group and speci ed in Section IA.G.1, includes three yield curve factors (the rst three
PCs) and three macro factors, git, got, and gzt. Column 2 indicates whether the three macro
variables are assumed to be measured with errors in the estimation of model CSM (3,6)group-
Columns 4 and 6 report the rst-order serial correlation of regression residuals.

1) 2 (3) 4) (5) (6)
Panel A: Panel B:

Dependent Macro Regressions of g;; on PCY_3 , Regressions of g;; on PCY_g ,
variable Measure- 5 : 5 :

ment Error R AR(1) of residuals R AR(2) of residuals
Gt 0.116 0.125

No [0.148 0.770] [0.206  0.809]

Yes [0.140 0.773] 0.951 [0.201 0.814] 0.948
ot 0.082 0.119

No [0.144 0.816] [0.171  0.845]

Yes [0.137 0.802] 0.960 [0.164 0.829] 0.946
st 0.106 0.123

No [0.152 0.708] [0.219 0.766]

Yes [0.145 0.697] 0.903 [0.216 0.753] 0.893
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Table IA.C1: Estimates of Parameters on the Market Price of Risk

This table reports the maximum likelihood estimates of parameters Ao and A1 that govern
bond risk premia in an A/-factor constrained, spanned macro- nance term structure model
(MTSM) as speci ed and denoted CSM (£, N) in Section I1A.G.1. The underlying state
variables include the SAGLasso macro factor, @, constructed in Section 4.1 and the rst
L principal components (PCs) of bond yields, PC; o = (PCyq,...,PCL). The three
MTSMs considered include CSM (3,4) (panel A), CSM (4,5) (panel B), and CSM (5, 6)
(panel C). The one-period risk premium is as speci ed in Eq. (13): t=Xo+ Xt =
Ao+ A1 (PC1 Lty C:'t)". Zero entries of Ao and A1 re ect our model selection outcome.
Values in parentheses are standard errors computed using Monte Carlo simulations.

A1 (W x N)
Sta_te Xo A, N) A, 1) A1(-,5)
variables —
Gt PC1:t PCa.t PCa:t PC4:t PCs:t
Panel A: Model CSM (3,4)
PC1:t 0.013 -6.11e-04  -0.054  -0.313 0
(0.002) (8.97e-05) (0.016) (0.087)
PCy:t 0.002 -1.45e-04 0 0 -0.458
(9.31e-04)  (7.126-05) (0.0143)
PCs;t 0 0 0 0 0
ét -0.278 -0.159 0.093 0 0
(0.152) (0.081)  (0.035)
Panel B: Model CSM (4, 5)
PC1:t 0.018 -8.13e-04  -0.049  -0.152 0 0
(0.003)  (9.04e-05) (0.007) (0.060)
PCy:t 0.002 -1.32e-04 0 -0.031 -0.129 0.140
(0.001) (9.13e-05) (0.035) (0.139) (0.148)
PC3;t 0 0 0 0 0 0
PCa:.t 0 0 0 0 0 0
Gt 0 0 -0.633 0 0 -8.77
(0.243) (4.871)
Panel C: Model CSM (5, 6)
PC1:t 0.029 -6.47e-04  -0.048  -0.173 0 0 -0.708
(0.003) (8.76e-05)  (0.009) (0.076) (0.259)
PC2.t 0 -2.60e-04 0 0 -0.207 0.098 0
(9.26¢-05) (0.102)  (0.115)
PCs.t 0 0 0 0 0 0 0
PCa4:t 0 0 0 0 0 0 0
PCs.t 0 0 0 0 0 0 0

Gt



Table IA.D1: Finite-Sample Properties of Statistics in Testing Spanning Hypothe-
sis | under a VAR-based Data-Generating Process

This table presents results based on nite-sample distributions of the statistics that are involved in tests of
Spanning Hypotheses | stated in Section 2.2. The analysis is based on 5,000 bootstrapped samples generated from
the reduced-form VAR described in Egs. (1A.D4) and (IA.D5) (panels Al through B2) or from the macro- nance
term structure model MIM (3, 4) (panels A3 through B4) that satis es the \macro-independence restrictions' given
in Eq. (IA.D9). The length of each bootstrapped sample is set to be consistent with either the full sample (panel
A) or the post-1984 subsample (panel B). Test statistics considered include those computed using the Hansen and
Hodrick (1980) GMM covariance estimator (HH), the Newey and West (1987) HAC covariance estimator (NW)
with 18 lags, the out-of-sample ENC-REG test of Ericsson (1992), or the out-of-sample ENC-NEW test of Clark
and McCracken (2001). For each test statistics, the 95th percentile of the bootstrap distribution is reported as
the 5% critical value, and the p-values (in angle brackets) are the frequency of bootstrap replications in which
the test statistics are at least as large as the statistic in the data. The \ R?" and \ R2." measures denote the



Table 1A.ELl: Ibragimov-Muller Test of Spanning Hypotheses | and 11

The average return to zero-coupon bonds from month ¢ to month ¢ + 12 less the month-¢ yield
on a one-year bond is regressed on either PC? 5. and Gy for Spanning Hypothesis | (H$')
or PC; s¢ and Gt for Spanning Hypothesis Il (H$?), where PC$ 3t denotes the rst three
principal components (PCs) of observed bond yields; PC1 5. the Itered rst ve PCs of noise-
uncontaminated yields; and G the SAGLasso single factor. All reported quantities are the
p-values for the Ibragimov-Muller (2010) test of the individual signi cance of the coe cients.
The dependent variable is the excess return averaged over 2- through 5-year (10-year) bond
maturities in regressions over the full sample period 1964{2014 (the post-1984 subsample). In
the full-sample analysis, each block is constructed such that they are 12 months apart from each
other.

Spanning Hypotheses Tested

HS? HS? HS? HS?

Full sample, 1964{2014 Subsample, 1985{2014
q@ofblocks) g=8 q=16 q=8 q=16 q=8 =16 =8 q=16
PC2.¢(PC1;t) 0.039 0.001 0.006 0.003 0.219 0.417 0.001 0.001
PC3.¢(PC2:t) 0.016 0.009 0.327 0.047 0.020 0.006 0.036 0.379
PC3.¢(PC3:t) 0.162 0.354 0.309 0.615 0.037 0.647 0.536 0.743
PC4:t 0.186  0.961 0.278  0.942
PCs:t 0.170  0.107 0.002  0.002
ch 0.009 0.018 0.004 0.014 0.044 0.049 0.015 0.019
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Table 1A.F1: Tests of An Alternative Version of Spanning Hypotheses |1

This table presents asymptotic and nite-sample results from tests of an alternative version of
Spanning Hypothesis |1, denoted ng;"f, that states that the SAGLasso macro factor (Section 4.2)
has no additional predictive power for future excess bond returns, conditional on the \cycle"
factor of Cieslak and Povala (2015). The tests of ng;Cf are based on the following regression,
as speci ed in Eq. (1A.F11):

(12nm) _ 077 1A
TZte1p = @+ Becfy + By Ge + ervaz,

where mﬁ%fl)z is the excess return to an n-year zero-coupon bond from month ¢ to month ¢ + 12,

forn = 2,5,7,10; Qt denotes the cycle factor; and ét the SAGLasso macro factor. For the in-
sample results (panel A), t-statistics are computed using either the Hansen and Hodrick (1980)
GMM covariance estimator (in parentheses) or the Newey and West (1987) HAC covariance
estimator (in brackets). Out-of-sample tests considered (panel B) include the \ENC-REG" test
of Ericsson (1992) and the \ENC-NEW" test proposed by Clark and McCracken (2001). The

R? and * R2,, measures denote the incremental R? and out-of-sample R? of Campbell and

Thompson (2008), respectively, due to augmenting univariate regressions of m&i”l)z on Eft with

Gy as in the above equation. The sample spans the period November 1971{December 2014. To
obtain the nite-sample distributions of the aforementioned six statistics, 5,000 bootstrapped
samples are generated from the term structure model speci ed in Egs. (IA.F12){(I1A.F14) in
Section IA.F. For each set of test statistics, the 95th percentile of the bootstrap distribution is
reported and underlined as the 5% critical value, and the p-values (in angle brackets) are the
frequency of bootstrap replications in which the test statistics are at least as large (small) as the
statistic in the data.

maturity
(year) 2 5 7 10 2 5 7 10
Panel A: In-sample under [/ Panel B: Out-of-sample under 1/
G, 0.688 2491  3.376  4.153
HH (4.257) (4.994) (4.537) (4.367) ENC-REG 1.917 3.099 3.620 4513
(1.964) (2.121) (2.601) (2.890) (1.617) (2.675) (3.837) (4.067)
(0.001) (0.000) (0.000) (0.000) (0.033) (0.026) (0.066)  (0.029)
NW [4.684] [5.506] [4.953] [4.735] ENC-NEW 41321 77.762 80.203  77.102
[1.872] [2.120] [2.588] [2.857] [1.374] [4.429] [9.080] [10.746]
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)  (0.000)
R? 0.132 0.144 0.131 0.124 R, 0.053 0.143 0.132 0.103
(0.011) (0.032) (0.062) (0.072) (0.010) (0.033) (0.065) (0.075)
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001)  (0.009)
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Table 1A.G2: Properties of Annual Excess Returns for Five-Year Bonds Implied
by Term Structure Models with Unspanned Macro Risks

This table presents the model-implied population moments of unconditional and condi-
tional excess returns on a ve-year bond, based on the macro- nance term structure model
CUSM (£, N) speci ed in Section IA.G.1. Model CUSM (£, N) is an N-factor model with
unspanned macro risks and \zero restrictions™ imposed on risk premium parameters, whose
underlying state vector Xy = (PC1 L.t, Gt), where PCy .t represent the rst £ principal
components (PCs) of the true yields and Gt the (unspanned) SAGLasso macro factor. The
last six columns quantify the variance of true conditional expected excess returns attributable
to time variation in the true state vector X; (column 4), the rst three PCs of observed yields
(column 5), the rst three PCs of true yields (uncontaminated by measurement errors) (column
6), the rst £ PCs of observed yields (column 7), the rst £ PCs of true yields (column 8),
and the rst three yield PCs plus the SAGLasso factor G (column 9), respectively. For each
of the last ve columns, their ratios to the full-information variance (column 4) J the variance
ratios \VR" ]| are reported in braces. The R? reported for each of the last three columns is
their ratios to the total variance (column 3). The sample period extends from January 1985
to December 2007.

1 @ (3) (4) (5) (6) O ©) )
Total Variance of conditional expectation based on
L Mean  \/ariance

Full info PC({_&t PC 1-3,¢ PC i’—[,,t PC 1-L,t PC 1-3,t



Figure IA.B1: Predictive R? of Macroeconomic Factors Based on Di erent Lags
This gure depicts the in-sample and out-of-sample R? from bond return predictions with single

macroeconomic factors. Macroeconomic factors are constructed from 131 macro variables, along
with 0, 3, 6, 9, or 12 of their lags. The sample spans the period January 1964 to December 2014.

Panel A: In-sample R-squared

04 I
0.3 .
0.2 i
0.1F .
0
2-year bond 5-year bond
03 Panel B: Out-of-sample R-squared
. I I
I o lag
0.251 | 3 lags 7
[C"6lags
0.2+ I 9 lags -
[ 12 lags

0.15

0.1

0.05

2-year bond 5-year bond

45



References

Barillas, F. 2012. Can we exploit predictability in bond markets? Available at SSRN 1787567 .
Working paper, Emory University.

Bauer, M. D., and J. D. Hamilton. 2018. Robust bond risk premia. Review of Financial Stud-
ies 31(2):399{448.

Bianchi, D., M. Buchner, and A. Tamoni. 2021. Bond Risk Premia with Machine Learning. Review
of Financial Studies 34(2):1046{1089.

Bikbov, R., and M. Chernov. 2010. No-arbitrage macroeconomic determinants of the yield curve.
Journal of Econometrics 159(1):166{182.

Campbell, J., and S. Thompson. 2008. Predicting excess stock returns out of sample: Can anything
beat the historical average? Review of Financial Studies 21(4):1509{1531.

Cieslak, A. 2018. Short-Rate Expectations and Unexpected Returns in Treasury Bonds. Review of
Financial Studies 31(9):3265{3306.

Cieslak, A., and P. Povala. 2015. Expected returns in Treasury bonds. Review of Financial Stud-
ies 28(10):2859{2901.

Clark, T., and M. McCracken. 2001. Tests of equal forecast accuracy and encompassing for nested
models. Journal of Econometrics 105(1):85{110.

Cochrane, J., and M. Piazzesi. 2005. Bond risk premia. American Economic Review 95(1):138{160.

Cochrane, J., and M. Piazzesi. 2008. Decomposing the Yield Curve. Working Paper, University of
Chicago.

Du ee, G. R. 2007. Are variations in term premia related to the macroeconomy? Working paper,
Johns Hopkins University.

Du ee, G. R. 2010a. Forecasting with the term structure: The role of no-arbitrage restrictions.
Working paper, Johns Hopkins University.

Du ee, G. R. 2010b. Sharpe ratios in term structure models. Working paper, Johns Hopkins
University.

Du ee, G. R. 2011. Information in (and not in) the term structure. Review of Financial Stud-
ies 24:2895{2934.

Du ee, G. R. 2013. Bond pricing and the macroeconomy. In G. M. Constantinides, M. Harris,
and R. M. Stulz (Eds.), Handbook of the Economics of Finance, Volume 2B: Asset Pricing, pp.
907{968. North Holland.

Du e, D,, and R. Kan. 1996. A yield-factor model of interest rates. Mathematical Finance 6:379{
406.

Ericsson, N. 1992. Parameter constancy, mean square forecast errors, and measuring forecast
performance: An exposition, extensions, and illustration. Journal of Policy Modeling 14(4):465{
495,

46



Ghysels, E., C. Horan, and E. Moench. 2018. Forecasting through the rear-view mirror: Data
revisions and bond return predictability. Review of Financial Studies 31(2):678{714.

Hansen, L., and R. Hodrick. 1980. Forward exchange rates as optimal predictors of future spot
rates: An econometric analysis. Journal of Political Economy 88(5):829{853.

Ibragimov, R., and U. K. Muller. 2010. t-Statistic based correlation and heterogeneity robust
inference. Journal of Business & Economic Statistics 28(4):453{468.

Joslin, S., A. Le, and K. J. Singleton. 2013. Why Gaussian macro- nance term structure models
are (nearly) unconstrained factor-VARs. Journal of Financial Economics 109(3):604{622.

Joslin, S., M. Priebsch, and K. J. Singleton. 2014. Risk premiums in dynamic term structure models
with unspanned macro risks. Journal of Finance 69(3):1197{1233.

Joslin, S., K. J. Singleton, and H. Zhu. 2011. A new perspective on Gaussian dynamic term
structure models. Review of Financial Studies 24(3):926{970.

Koijen, R. S. J., T. E. Nijman, and B. J. M. Werker. 2010. When Can Life Cycle Investors Bene t
from Time-Varying Bond Risk Premia? Review of Financial Studies 23(2):741{780.

Ludvigson, S., and S. Ng. 2009. Macro factors in bond risk premia. Review of Financial Stud-
ies 22(12):5027{5067.

Ludvigson, S., and S. Ng. 2011. A factor analysis of bond risk premia. In A. Ullah and D. E. A.
Giles (Eds.), Handbook of Empirical Economics and Finance, pp. 313{372. CRC Press.

Muller, U. K. 2014a. HAC corrections for strongly autocorrelated time series. Journal of Business
& Economic Statistics 32(3):311{322.

Muller, U. K. 2014b. Rejoinder. Journal of Business & Economic Statistics 32(3):338{340.

Newey, W. K., and K. D. West. 1987. A simple, positive semi-de nite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica 55:703{708.

47



