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Abstract

We study the predictive power of option-implied moment risk premia embedded in the
conventional variance risk premium. We find that although the second-moment risk premium
predicts market returns in short horizons with positive coefficients, the third-moment (fourth-
moment) risk premium predicts market returns in medium horizons with negative (positive)
coefficients. Combining the higher-moment risk premia with the second-moment risk pre-
mium improves the stock return predictability over multiple horizons, both in sample and
out of sample. The finding is economically significant in an asset-allocation exercise and
survives a series of robustness checks.

. Introduction

The issue of whether stock market returns are predictable has been one of
the most discussed topics in financial economics. Until a few decades ago, the
widespread view was that market returns are unpredictable if the market is efficient.
It has now been generally accepted that expected returns are time varying and partially
predictable even in an efficient market (see, e.g., Campbell and Shiller (1988), Fama
and French (1989), Kothari and Shanken (1997), and Cochrane (2008)). Ample
empirical evidence has shown that variables, including financial ratios and macro-
economic variables, can predict the variation of stock returns over business-cycle and
multiyear horizons. More recent articles uncover that predictors extracted from
options data forecast market returns at horizons as short as a few months. This article
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contributes to the literature on the time-series predictability of stock market returns
over short horizons by exploiting new predictive information in equity index options.

A typical example of a short-term predictor extracted from the option market is
the variance risk premium (see, e.g., Bollerslev, Tauchen, and Zhou (2009)), which
has been shown to strongly predict the market return over horizons of up to
6 months. In fact, the conventional variance risk premium, defined as the difference
between the squared Volatility Index (VIX) and the realized return variance, is a
quasi-variance risk premium (QVRP) because it not only has a second-order
component, the pure variance risk premium (PVRP), but also contains higher
moment premium components. In this article, we seek to investigate the predictability
of moment risk premia embedded in QVRP over different forecasting horizons.

Following Bakshi and Madan (2000) and Bakshi, Kapadia, and Madan (2003),
we compute the risk-neutral moments of returns using portfolios of out-of-the-
money (OTM) European call and put options. Matching the risk-neutral moments
with their realized counterparts, we calculate the PVRP, the risk premium on the
third moment of returns (M3RP), and the risk premium on the fourth moment of
returns (M4RP) in a model-free fashion.

Using the S&P 500 index and its option data from 1990 to 2019, we investigate
the predictability of the market return afforded by the option-implied moment risk
premia over different horizons using predictive regressions. We find that higher-
moment risk premia, M3RP and M4RP, are similar to each other but have different
statistical features from the second-moment risk premium, PVRP. In particular,
PVRP and M3RP are only moderately correlated, and their means have different
signs. By contrast, M3RP and M4RP contain overlapping information and are
highly correlated. This evidence suggests that much information in the higher-
moment risk premia is unspanned by PVRP, and aggregating them may lead to
substantial information losses. As a consequence, there is room for potential
improvement in predicting the market equity return using options by considering
these moment risk premia separately.

We evaluate the predictability of each moment risk premium using predictive
regressions for 1- to 24-month excess returns on the S&P 500 index both in sample
and out of sample (OOS). We have three main findings. First, we find that the
predictive performance of PVRP dominates that of QVRP at all horizons, with higher
t-statistics and larger in-sample and OOS Rs. This confirms that PVRP, a cleaner
measure of the variance risk premium after removing the higher-moment risk premia
from QVRP, is a better predictor than the conventional variance risk premium.

Second, we find that although PVRP predicts short-term market returns,
M3RP and M4RP predict medium-term market returns. At 6- to 24-month horizons,
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12-month horizons, in contrast to 3.7%, 0.9%, and 0.3% for the univariate regres-
sions with QVRP. The OOS R?s of the forecast combination with PVRP and M3RP
are 10.9%, 6.9%, and 4.5% at 6-, 9-, and 12-month horizons, compared with
2.0%, —2.4%, and —7.9% in the univariate regressions with QVRP. Our main
findings survive various robustness checks.

We further examine the economic value of the predictability offered by the
moment risk premia via an asset-allocation experiment. The different predictability
contained in moment risk premia can be exploited by forming strategic portfolios.
Consistent with our findings on the predictive regressions, the portfolios formed
on PVRP result in a higher certainty equivalent in the shorter term, and those formed on
M3RP or M4RP result in a higher certainty equivalent in the longer term. In addition,
portfolios that combine the predictability from PVRP and M3RP (M4RP) generate
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Whereas Jondeau et al. use realized skewness to predict returns in the next month, we
use the option-implied higher-moment risk premia, which have a natural forward-
looking component, to predict the market return over 1- to 24-month horizons.
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We denote the quantity defined in equation (3) as the quasi-realized variance
(QRYV) because the function g(r) differs from " only in higher-order terms. To see
this, we apply Taylor expansion to g(r) and get

1 1
€))] g(r) :r2+§r3+ﬁr4+o(r4\).

Taking the difference between the squared VIX and QRV gives the QVRP:
(5) QVRP, = VIX? — E,[QRV].

We use the word guasi to distinguish our definition of the variance risk
premium from those in the prevailing literature. Many articles use different
formulations of realized variance other than QRV as the realized counterpart of
VIX?. Formstance, Carr and Wu (2009) use the realized squared simple returns
(A/)(T—0)"Y l(er")z)Zalnd Bollerslev et al. (2009) use the realized squared
log returns (1/(T—¢)" 1 72).

The higher-order terms in equation (4) are nontrivial when returns can jump.
The empirical literature has presented strong evidence of jumps in the S&P
500 index return (e.g., Bakshi, Cao, and Chen (1997), Andersen, Benzoni, and
Lund (2002), Pan (2002), Eraker, Johannes, and Polson (2003), and Christoffersen,
Jacobs, and Ornthanalai (2012), among others). If the higher-order terms on the
right-hand side of equation (4) are nonnegligible, QRV serves as the only consistent
realized counterpart of VIX? regardless of the presence of jumps. This internal
consistency between the option-implied moments and their realized counterparts in
QVRP facilitates the identification of the higher-order risk premiums within QVRP,
as follows:
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PVRP, M3RP, and M4RP represent risk premiums associated with the second,
third, and fourth moments of returns, respectively. In the Supplementary Material,
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we derive the moments of returns in a jump-diffusion model as an example to
illustrate the potential sources of higher moments.

The risk-neutral components in the moment risk premia can be constructed by
using the quadratic, cubic, and quartic contracts introduced by Bakshi et al. (2003).
We denote them as the implied variance (IV), the implied third moment (IM3), and
the implied fourth mon‘{ent (IMT):

2 " *1+ log(F,/K)

_ 1 0 2
© V=B Ty =2 0 e ©,(K,T)dK,
__ 1 4o 3
% M3, ==—H7 r(t,T)
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®) 1M4,=% ¢ )’
e °°12(1og(Ft/K))2*4(10g(K/Ft))3®t(K,T)dK.
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The realized variance (RV), realized third moment (RM3), and realized fourth

moment (RM4), corre?f)nding to IV, IM3 ,Ed IM4, are, respec%ly, as follows:
v v v

) RV,=—— /2, RM3,=—— 3, RM4,=—— %

12 i’ 1
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The PVRP, the M3RP, and the M4RP are defined as the differences between
the risk-neutral and physical expectation of realized moments of log returns:
(10) PVRP, =1V, — E,[RV7],
M3RP, =1IM3, — E,[RM37],
M4RP, =1M4, — E,[RM47].
Here, we use the term risk premium to indicate that the variables in equation (10)
are differences between Q- and P-expectations.” In the next section, we show how

to construct QVRP, PVRP, M3RP, and M4RP empirically using option prices and
stock returns.

Ill. Data Source and Risk Premiums
A. Data Source and Variable Construction

We use the S&P 500 index option data from the CBOE, starting from Jan. 1990
and ending in July 2019. Our data sample includes the highest closing bid and the

2Strictly speaking, these moment risk premia are not profits from a trading strategy and hence do not
qualify as risk premiums in the economic sense, as pointed out by Kozhan et al. (2013).

ssaid Asianun abpliquied Aq suljuo paysiignd XS80000206012200S/£101°0L/B1010p//:5d1y


https://doi.org/10.1017/S002210902000085X

Fan, Xiao, and Zhou 73

lowest closing ask prices of all call and put options, strike prices, and expiration
dates. We obtain monthly 1-month risk-free rates from the CRSP. These rates are
based on the Treasury bill that has a minimum of 30 days to maturity and is the
closest to 30 days to maturity. We obtain monthly dividends rates of the S&P
500 index from Compustat, which are the anticipated annual dividend rates.

We apply standard filters to select the option sample. First, we delete all
options with 0 open interest, 0 bid prices, and missing implied volatility. Second,
following the literature on model-free implied volatility (e.g., Jiang and Tian (2005)
and Carr and Wu (2009)), we only keep OTM and at-the-money options. A put
(call) option is regarded as OTM if the strike price is lower (higher) than the forward
price. The 1-month forward price at time ¢ is defined as ', = S,el"7+~9)7_ Here, S, is
the S&P 500 index spot price, 7= 1/12 denotes the time to maturity of 1 month, 7y, is
the risk-free rate, and ¢, is the dividend rate at time z. Third, we only keep options
with less than 365 days of expiry. After applying the filters, we have 5,503,043
option-day data points. Similar to the construction of the VIX provided by the
CBOE, we work with the best bid and ask closing quotes. The option price is the
average of the highest closing bid and the lowest closing ask prices.

At the end of each month, we construct the annualized VIXZ, IV, IM3, and IM4
using the discrete versions oEquations (1), (6), (7), and (8):

11 1"
(b VX% g [T K T K )IAKG
=
1 M e
IV, ~ T [/ (t,T.K)+ f,(¢t,T,K;_1)]AK;,
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where AK;=K; — K, . Here, m,, is the number of available OTM options on day ¢
with maturity =T — ¢ after we filter the options data. Therefore, m, , varies by date ¢
and maturity 7. f, f,, f3, and f; are defined as follows:

Flo7K) =2,

Fe ) =R R o ),

1 ey SR KE) —3(os(K/F0 ¢, )
1200 <F;/Ki>>;§4<log KIED o

where F, denotes the forward price, and ®4K,T) denotes the time ¢ value of an
out-of-the-money option with strike price K and maturity 7 > ¢ Following the
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construction of VIX provided by the CBOE, we select two maturities of options:
the shortest maturity with more than 30 days of expiry and the longest maturity
with less than 30 days and more than 7 days of expiry. The annualized VIX? in
equation (11) is then calculated for these two maturities. Next, we interpolate
the 30-day VIX? using the VIX? of the two maturities with linear interpolation.
The same procedure applies to the calculation of IV, IM3, and IM4 with 30 days
of expiration.

Following the recent literature (e.g., Bollerslev et al. (2009), Buss etal. (2019),
among others), to approximate the expectations under the physical measure, we use
daily S&P 500 index prices to calculate quasi realized variance QRYV, realized
variance (RV), realized third moment (RM3), and realized fourth moment (RM4)
for each calendar month. In accordance with the risk-neutral moments that are
constructed based on the forward prices, the realized moments are also computed
using forward prices. Specifically, we assume that the risk-free rate and dividend
rate are constant within a month. Given month ¢, we denote the forward price on
the nth day of the month as F7}. Here, the subscript ¢ denotes the month, and the
superscript n denotes the day of the month. F7} is calculated as

=S"exp ({17, — %) (N, —n)/(lZN,)) ,
where S} is the spot price on day #n of month #; r, and g, are the annualized risk-free
rate and dividend rate of month ¢, respectively; and N, is the number of trading days
in month z. We calculate daily excess log returns as

Pt = long"“) 10g<F;’\).

Realized moments ar@en computed as Z

N
i 2
QRV— i—1-r) RN = (7,

RMS3,; = (,) JRM4, = (4
i=1 i=1

Notice that the implied moments (VIX, IV, IM3, and IM4) are calculated using
OTM options at the last trading day of the month, but the realized moments (QRYV,
RV, RM3, and RM4) are calculated with daily returns within the month ¢ In other
words, we use the realized moments of # — 1 as an estimator for the expected
realized moments of 7. This formulation has the advantage that the risk premiums
are ex ante and model-free. Because both implied and realized moments are
available at time ¢ without relying on any specific model, this facilitates the
return-forecasting exercise in Section V.

B. Summary Statistics of Moment Risk Premia

Table | reports the summary statistics of risk-neutral moments, realized
moments, and moment risk premia. The summary statistics of the risk-neutral
moments, VIXZ, IV, IM3, and IM4, and those of the realized moments, QRV, RV,
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TABLE 1
Summary Statistics of Moment Risk Premia

Panel A of Table 1 reports the mean, standard deviation, median, 5% quantile (P5), and 95% quantile (P95) of risk-neutral and
realized moments. Risk-neutral moments include the squared Volatility Index (VIX2), implied variance (1V), implied third
moment (IM3), and implied fourth moment (IM4). Realized moments include the quasi-realized variance (QRV), realized
variance (RV), realized third moment (RM3), and realized fourth moment (RM4). Panel B reports the mean, standard deviation,
median, 5% quantile (P5), 95% quantile (P95), and autocorrelation coefficient (AR(1)) of the moment risk premia: quasi-
variance risk premium (QVRP), pure variance risk premium (PVRP), third-moment risk premium (M3RP), and fourth-moment
risk premium (M4RP). Moment risk premia are the differences between the risk-neutral and realized moments. Panel C reports
the correlation matrix among moment risk premia. All variables are denoted in percentage per annum. The sample period is
Jan. 1990-July 2019.

Panel A. Risk-Neutral and Realized Moments

VIX? v IM3 IM4
Mean 3.86 4.02 —0.51 0.23
Std. Dev. 377 4.06 1.14 0.93
Median 275 279 —0.24 0.06
P5 1.05 1.08 -1.80 0.01
P95 9.64 10.08 —-0.04 0.79

QRV RV RM3 RM4
Mean 291 291 —7.15x 1072 410 x 1072
Std. Dev. 5.07 5.07 0.09 0.03
Median 1.54 1.54 9.02 x 107* 323 x 107*
P5 0.41 0.41 —0.07 213 x 10°°
P95 8.93 8.97 0.04 9.28 x 1072

QVRP PVRP M3RP M4RP

Panel B. Moment Risk Premia

Mean 0.95 1.10 -0.51 0.23
t-stat. 7.0 8.61 —8.33 4.78
Median 0.90 1.00 —-0.23 0.06
P5 —1.45 —1.23 —-1.72 0.01
P95 3.96 4.25 —-0.04 0.79
AR(1) 0.38 0.34 0.55 0.46
Panel C. Correlation Matrix

QVRP 1.00 0.99 0.47 —0.55
PVRP 0.99 1.00 0.36 —0.45
M3RP 0.47 0.36 1.00 —-0.98
M4RP —0.55 —0.45 —0.98 1.00

RM3, and RM4, are reported in Panel A. Comparing risk-neutral and realized
moments, we observe that the sample means of risk-neutral moments are larger
in magnitude than those of their realized counterparts. The risk-neutral and realized
third moments are both negative. IM3 is larger in magnitude, has a larger standard
deviation, and is more left skewed than RM3. IM4 and RM4 follow a similar pattern
with an opposite sign. The mean of VIX? is slightly lower than that of IV because
VIX? is a linear combination of IV, IM3, and IM4.

Panel B of Table | reports the summary statistics of the moment risk premia.
Consistent with the existing literature, QVRP is on average positive, with a mean of
0.95%. M3RP is on average negative, which explains why PVRP has a slightly
larger mean than QVRP. All risk premiums are significantly different from 0 at the
1% level. Compared with QVRP and PVRP, M3RP and M4RP have a relatively
lower standard deviation and higher autocorrelation.

Panel C of Table | reports the correlation matrix among the risk premiums.
The correlation between QVRP and PVRP is as high as 0.99, implying that PVRP is
the major component of QVRP. There is also substantial comovement between
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FIGURE 1
Time Series of QVRP and PVRP

Figure 1 shows the time series of the quasi-variance risk premium (QVRP) and the pure variance risk premium (PVRP) from
Jan. 1990 to July 2019.

Graph A. QVRP
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PVRP and higher moment risk premia, with a correlation coefficient of 0.47 for
M3RP and —0.55 for M4RP. M3RP and M4RP almost always move in opposite
directions, with a correlation coefficient of —0.98.

Figure 1 plots the time series of QVRP and PVRP. The dynamics of QVRP and
PVRP are almost indistinguishable. Both QVRP and PVRP fluctuate between
positive and negative values and display moderate variations as well as occasional
spikes. Despite the fact that both QVRP and PVRP are on average positive, as
shown by the summary statistics, there are a couple of extreme negative values in
late 2002, 2008, and 2011. These negative spikes may be attributed to the down-
ward volatility jumps, as proposed by Amengual and Xiu (2018), or heightened
uncertainty, as proposed by Hu, Pan, Wang, and Zhu (2019), associated with
resolutions of policy uncertainties. Figure 2 plots the time series of M3RP and
MA4RP. Compared with QVRP or PVRP, M3RP and M4RP have fewer fluctuations
but sharper spikes. The spikes in M3RP and M4RP coincide with the volatile
periods in PVRP.

IV. Predictive Regression Analysis

In this section, we analyze the predictability of stock market returns using the
moment risk premia embedded in QVRP. We run predictive regressions of the
market return of different horizons on each moment risk premium separately and on
multiple moment risk premia jointly. Section IV.A reports the baseline predictive
results. Section IV.B reports the prediction results for weighted least squares. In
Sections IV.C and IV.D, we control for the established long-term and short-term
predictors, respectively.
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FIGURE 2

Time Series of M3RP and M4RP

Figure 2 shows the time series of the third-moment risk premium (M3RP) and the fourth-moment risk premium (M4RP) from
Jan. 1990 to July 2019.

Graph A. M3RP
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Graph B. M4RP
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A. Predicting the Market Return

As shown by Bollerslev etal. (2009), Drechsler and Yaron (2011), and Bekaert
and Hoerova (2014), the variance risk premium has significant predictive power for
future market returns at the quarterly horizon. In this section, we show that although
QVRP predicts short-term market returns of up to 6 months, higher-moment risk
premia, M3RP and M4RP, predict medium-term market returns of up to 24 months.
We also show that at any horizon from 1 to 24 months, separating M3RP and M4RP
from PVRP yields better predictive results.

Let X, be a vector of predictive variables containing end-of-month values. We
use the following specification for predictive regressions:

(12) Rijn=oy, +ﬁ;,Xz + &ttths

where R, .+, is the market excess return from the first day of next month ¢+ 1 to the
last day of month ¢+ 4. We use simple excess return on the S&P 500 index as a proxy
of market excess return.’

As shown in the summary statistics in Table 1, M3RP and M4RP are correlated
with PVRP. To investigate the predictive information in higher-moment risk premia

*Here, we use the S&P 500 returns instead of aggregate stock market returns because moment risk
premia are only available for the former. An important difference from the traditional aggregate market
return is that the S&P 500 is a price index, so returns do not include dividends.
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orthogonal to PVRP, we first regress M3RP and M4RP on PVRP and a constant to
obtain a time series of M3RP and M4RP residuals, denoted as M3RP+ and M4RP.
We then use the residuals M3RPY and M4RP* as predictors. In the univariate
regressions, X; = QVRP,, PVRP, M3RP;, or M4RP;, respectively. In the joint
regressions, we consider X, = (PVRP,,M3RP} " and (PVRP,,M4RP},'. We use
Newey—West standard errors to correct for the zfutocorrelation and hetegoscedasti-
city in error terms.

The predictive regression results are reported in Table 2, including univariate
regressions using QVRP, PVRP, M3RP*, and M4RP*, respectively, and multi-
variate regressions using PVRP and M3RP*, and PVRP and M4RP" jointly.
Consistent with the literature, in the univariate regressions of QVRP (first column
of each horizon), the coefficients on QVRP are positive and highly significant
for horizons of up to 6 months. QVRP achieves a maximum adjusted R of over
9% at the 3-month horizon. The predictive power of QVRP tapers off as the
prediction horizon gets longer. As a cleaner measure of the variance risk premium,
PVRP has better predictive performance than QVRP in all horizons, with larger
t-statistics and R’s.

The predictive power of the higher-moment risk premia (the third and fourth
columns of each horizon) has a different pattern. The coefficients on M3RP* are
negative across all horizons. At the short end (1 month and 3 months), the predictive
regressions on M3RP* feature small -statistics and low R”s. At medium horizons
(6-24 months), by contrast, M3RP* is significantly negative. The R*s of M3RP*
from 6 to 24 months range from 3.55% to 5.95%. Univariate regressions of M4RP*
exhibit a similar pattern, except that the coefficients on M4RP* are positive.
M3RPY and M4RP* share similar levels of predictive coefficients, #-statistics,
and R?s. This is not surprising because M3RP and M4RP are highly correlated,
with a linear correlation coefficient of —0.98.

The multivariate predictive regressions reveal interesting findings on the
higher-moment risk premia. First, the coefficients on PVRP and M4RP™ are always
positive, and those on M3RP* are always negative. Because PVRP and M3RP*
predict future returns with opposite signs, the predictive power of QVRP is sub-
stantially hindered as a result of the negative prediction by M3RP canceling out the
positive prediction by PVRP. This could explain why QVRP is not as strong of a
predictor as PVRP at short horizons and has less predictive power at medium
horizons than M3RP.

Second, different from the univariate regressions, where the higher-moment
risk premia are only significant at longer horizons, the M3RP* and M4RP* coef-
ficients are statistically significant at all horizons in the joint regressions. At short
horizons, the M3RP* and M4RP~ coefficients turn highly statistically significant in
the multivariate regressions despite their insignificance in the univariate regres-
sions. The f-statistics of M3RP* are —2.7 in the joint regression for the 1-month
horizon and —3.5 for the 3-month horizon. Across all horizons, most of the
t-statistics of the M3RP and M4RP* coefficients in the joint regressions are larger
in magnitude than those in the univariate regressions.

Finally, combining higher-moment risk premia and PVRP leads to improve-
ments in R*s. The R?s of the joint regressions are always higher than those of the
univariate regressions across all horizons. For example, at the 6-month horizon,
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TABLE 2
Market Return Predictive Regressions at Different Horizons

Table 2 reports estimated regression coefficients and RPs of the predictability regressions for 1- to 24-month excess returns
on the S&P 500 index. Heteroscedasticity- and autocorrelation-robust t-statistics are reported in parentheses. For each
horizon, we report the predictive-regression results of the univariate regressions on the quasi-variance risk premium
(QVRP), the pure variance risk premium (PVRP), the residual of the third-moment risk premium after regressing on PVRP
(M3RP*), the residual of the fourth-moment risk premium after regressing on PVRP (M4RP*4), the bivariate regression on PVRP
and M3RP* jointly, and the bivariate regression for PVRP and M4RP* jointly. Returns are observed monthly, with the sample
period ranging from Jan. 1990 to July 2019.

. 2 3 4 5 5
Panel A. 1 Month
QVRP 0.31
(3.76)
PVRP 0.35 0.35 0.35
(3.86) (3.41) (3.50)
M3RP* —0.41 —0.41
(—1.38) (—2.69)
M4RP* 0.46 0.46
(1.10) (2.35)
R 3.69 4.28 1.18 0.84 5.45 512
Adj. 3.42 4.01 0.90 0.56 4.92 458
Panel B. 3 Months
QVRP 0.85
(6.26)
PVRP 0.95 0.95 0.95
(5.30) (3.31) (3.46)
M3RP* —~0.96 —-0.96
(-1.37) (~3.49)
M4RP* 1.08 1.08
(1.22) (3.03)
R 9.11 10.34 2.09 1.50 12.43 11.84
Adj. B 8.85 10.08 1.81 1.22 11.93 11.34
Panel C. 6 Months
QVRP 0.82
(5.50)
PVRP 0.99 0.99 0.99
(5.66) (2.79) (2.94)
M3RP* —2.21 —2.21
(—2.71) (~3.96)
M4RP* 2,57 257
(2.40) (4.04)
R 3.93 5.15 5.09 3.95 10.24 9.10
Adj. R? 3.65 4.88 4.82 3.68 9.73 8.58
Panel D. 9 Months
QVRP 0.57
(2.24)
PVRP 0.75 0.75 0.75
(2.91) (2.43) (2.45)
M3RP* —2.69 -2.70
(~3.39) (~3.55)
M4RP* 3.31 3.32
(3.28) (4.06)
R 1.19 1.86 4.81 4.15 6.68 6.03
Adj. ? 0.91 1.58 453 387 6.14 5.49
Panel E. 12 Months
QVRP 0.47
(1.42)
PVRP 0.65 0.66 0.66
(1.98) (2.22) (2.21)

(continued on next page)
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TABLE 2 (continued)
Market Return Predictive Regressions at Different Horizons

1 2 3 4 5 6
Panel E. 12 Months (continued)
M3RP* —2.96 —-2.96
(-3.39) (-3.37)
M4RP* 3.66 3.66
(3.40) (3.90)
R 0.56 0.99 4.06 3.55 5.07 457
Adj. R 0.27 0.71 378 3.27 4.51 4.01
Panel F. 24 Months
QVRP 0.46
(1.11)
PVRP 0.72 0.73 0.74
(1.59) (1.45) (1.47)
M3RP* —4.27 —4.28
(—2.48) (—2.42)
M4RP+ 5.31 5.32
(2.76) (2.85)
R 0.20 0.44 3.06 2.70 3.50 3.15
Adj. B —0.10 0.14 276 2.40 2.92 2.56

the R* of the joint regression with PVRP and M3RP* is as high as 9.7%, whereas
the univariate regression of QVRP only has an R’s of 3.7%. A more impressive
example is the 9-month predictive results, in which case the joint regression of
PVRP and M3RP* produces an R* of 5.5%, more than 5 times that of QVRP
(0.9%).

To compare the predictive power of different moment risk premia over dif-
ferent horizons, we plot the graph of adjusted R*s as a function of forecasting
horizons in Figure 3. Graph A shows the R*s of the univariate regressions of the
moment risk premia. Graph B shows the R*s of QVRP and the joint regression of
PVRP and M3RP*. Graph A shows that PVRP is a strong predictor at the short end.
After reaching its peak at the 3-month horizon, the R* tapers off and remains low
after 6 months. We see a less bumpy curve in the higher-moment risk premia. The
R*s of M3RP* and M4RP* are of a similar magnitude. Both of them reach their
highest at 6- to 10-month horizons and remain at moderate levels until 24 months. In
terms of R*s, PVRP outperforms the higher-moment risk premia at horizons shorter
than 6 months and underperforms them thereafter.

Graph B of Figure 3 illustrates the improvement in prediction power across
different horizons when we combine the predictability of moment risk premia. We
observe that the R’s of the joint regression stay above those of QVRP across all
horizons. The improvement is more pronounced over longer horizons. The evi-
dence illustrates that the higher moment risk premia contain complementary pre-
dictive power to PVRP. As aresult, separating the moment risk premia in QVRP and
including them in a joint regression will effectively combine the short-term pre-
dictability of PVRP and the medium-term predictability of the higher-moment risk
premia.

Note that we use the lagged realized moments as proxies for the physical
moments in the next month in this section. The advantage of this specification is
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FIGURE 3
In-Sample R? of Predictive Regressions

Graph A of Figure 3 plots the in-sample A (in percentage) of the predictive regressions for the S&P 500 return afforded by
moment risk premia in the univariate regressions, as a function of forecasting horizon (in months). We consider the pure

that both the risk-neutral moments and the lagged realized moments are available
ex ante without specifying any forecasting model. However, by using the lagged
realized moments, we implicitly assume that the realized moments are random
walks. In the Supplementary Material, we discuss two additional robustness checks,
in which we use predicted realized moments and intraday moments to construct
moment risk premia. The moment risk premia are then used to predict aggregate
stock returns.

It is worth noting that the high-frequency second moment and the high-
frequency higher moments have different properties. Under reasonable assump-
tions, utilizing intraday return data provides a more consistent and efficient
estimator for the return variance than using daily returns, but this is generally
not the case for realized higher moments. As shown by Neuberger (2012), the
skewness estimates of long-horizon log returns can be very different from those of
the high-frequency log returns because of the leverage effect. For simple returns,
the skewness estimates of long-horizon returns will be different from those of
short-horizon returns because of compounding, even in the absence of the lever-
age effect (see Bessembinder (2018)). In the Supplementary Material, we also
derive the sources of higher moments of long-horizon log returns in an illustrative
example. As shown in the Supplementary Material, our results remain qualita-
tively similar when using moment risk premia constructed by intraday or pre-
dicted moments.
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B. Predicting the Market Returns with Weighted Least Squares

Time-varying market return volatility might create heteroscedasticity in the
time series of the error term in the return-predictability regressions. Indeed, Johnson
(2019) finds that the return predictability afforded by the conventional variance risk
premium is not robust and is driven by several extreme observations with high
variance. To deal with potential heteroscedasticity, we consider the weighted least
squares (WLS) in addition to OLS in this section.

We estimate the regression coefficients in equation (12) using WLS in 2 steps.
In the first step, we estimatezgi ++h|r» the conditional variance of the market return
from ¢ to ¢t + h. Following Johnson (2019), we estimate.g;,,;, using realized
variance in the past month and in the past year:

> 2 2
Oy =4 DO oy,

where 67_, , is the sum of squared daily market returns in the past month, and o7, ,
is the sum of squared daily market returns in the past year. d,”d, and-¢ are the
estimated coefficients in a regression of O'it 45 ON a constant, atz_,’t, and o2 1
In the second step, we estimate the predictive regression for predictor X; using

the following regression:

(13) RiiinfOuihy = O fo1 i+ ﬂ;,Xt [ iihy T Epth-

Table 3 reports the WLS predictive regression results. We confirm with
Johnson (2019) that the #-statistics of WLS estimators are smaller in absolute value
across different horizons. Nevertheless, the predictive coefficients, significance,
and R’s are qualitatively similar to those reported in Table 2.

C. Control for Stock Return Predictors in Welch and Goyal

To relate our findings to the voluminous literature on market return predict-
ability, we consider a set of predictors documented in the previous literature
as control variables. Specifically, we consider 11 variables used by Welch and
Goyal (2008): dividend—price ratio (DP), dividend yield (DY), log earnings—
price ratio (EP), book-to-market ratio (BM), interest rate on a 3-month Treasury
bill (TBL), difference between Moody’s BAA- and AAA-rated corporate bond
yields (DFY), long-term government bond yield (LTY), net equity expansion
(NTIS), inflation calculated from the Consumer Price Index (CPI) for all urban
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TABLE 3
Market Return Predictive Regressions at Different Horizons (WLS)

Table 3 reports estimated regression coefficients and R®s of the predictability regressions using weighted least squares
(WLS) for the 1- to 24-month excess return on the S&P 500 index. Heteroscedasticity- and autocorrelation-robust t-statistics
are reported in parentheses. For each horizon, we report the predictive-regression results of the univariate regressions on the
quasi-variance risk premium (QVRP), the pure variance risk premium (PVRP), the residual of the third-moment risk premium
after regressing on PVRP (M3RP*), the residual of the fourth-moment risk premium after regressing on PVRP (M4RP+), the
bivariate regression on PVRP and M3RP* jointly, and the bivariate regression for PVRP and M4RP* jointly. Returns are
observed monthly, with the sample period ranging from Jan. 1990 to July 2019.

_ 2 3 4 5 _6
Panel A. 1 Month
QVRP 0.33
(3.19)
PVRP 0.35 0.30 0.30
(3.13) (2.83) (2.83)
M3RP+ —-0.57 —0.30
(=1.92) (~1.73)
M4RP* 0.78 0.40
(1.71) (1.71)
R 4.01 4.66 1.16 051 5.75 5.45
Adj. R 3.73 438 0.87 0.22 5.47 4.90
Panel B. 3 Months
QVRP 0.83
(4.31)
PVRP 0.89 0.77 0.78
(3.90) (2.52) (2.65)
M3RP+ —~1.43 -0.85
(—2.51) (~2.36)
M4RP+ 1.90 1.05
(2.36) (2.63)
R 9.50 10.72 1.43 0.48 12.43 11.92
Adj. R 9.24 10.46 1.14 0.19 12.17 11.40
Panel C. 6 Months
QVRP 0.90
(4.72)
PVRP 1.01 0.78 0.79
(4.30) (2.37) (2.31)
M3RP+ -2.36 -1.85
(—2.96) (~2.59)
M4RP+ 3.16 2.43
(3.07) (3.11)
R 3.96 5.21 485 3.63 9.85 8.93
Adj. R? 3.68 493 457 335 9.59 8.39
Panel D. 9 Months
QVRP 0.72
(2.85)
PVRP 0.85 0.60 0.59
(2.95) (2.18) (1.89)
M3RP* —2.53 -2.16
(—2.55) (-2.14)
M4RP+ 3.56 3.07
(3.18) (2.96)
R 113 1.86 474 413 6.42 597
Adj. R? 0.83 1.56 4.45 385 6.14 5.41
Panel E. 12 Months
QVRP 0.66
(1.92)
PVRP 08 0.53 0.52
(2.29) (1.82) (1.60)

(continued on next page)
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TABLE 3 (continued)
Market Return Predictive Regressions at Different Horizons (WLS)

1 2 3 4 5 6
Panel E. 12 Months (continued)
M3RP+ -2.73 -2.43
(—2.38) (-2.05)
M4RP+ 3.84 3.43
(3.03) (2.85)
R 0.41 0.87 3.93 3.47 4.75 4.39
Adj. R 0.11 0.58 3.64 3.18 4.46 3.81
Panel F. 24 Months
QVRP 0.69
(1.36)
PVRP 0.91 0.56 0.56
(1.61) (1.11) (1.00)
M3RP+ —4.16 -3.90
(—1.80) (—=1.73)
M4RP+ 5.64 5.28
(2.28) (2.28)
R 0.16 0.42 3.02 2.67 3.42 3.11
Adj. R —0.15 0.11 2.71 2.36 3.12 2.50

the 11 predictors as a control variable in each column.* Table 4 shows that the
coefficients on PVRP and M3RP are both statistically significant in all regres-
sions. In Panel A, only DP has significant coefficients among the 11 control
variables. The adjusted R’s of the 1-month prediction range from 5% to 6.5%,
similar to the baseline results.

In Panel B of Table 4, DP is the only significant predictor at the 12-month
horizon. The R? of the regression with DP as the control variable increases from 5%
in the baseline results to 16.5%. Despite insignificance coefficients, BM and NTIS
also substantially increase the 12-month adjusted R”s of the baseline results to 13%
and 8%, respectively. This is consistent with Welch and Goyal (2008), who find that
these predictors perform better at yearly horizons.

D. Control for Short-Term Predictors

The control predictors considered in Section IV.C are known to contain
predictability over multiyear horizons. Because we focus on the short-horizon
predictability of moment risk premia, we control for a set of established short—term
predictors in this section. We consider short interest (SI) from Rapach et al. (2016)
and the cross-sectional book-to-market factor (BMp) from Kelly and Pruitt (2013),
which are shown to contain short-term predictability for market returns. In addition,
because M3RP is closely related to jumps and skewness, we consider several jump-
or skewness-related predictors: realized signed jumps (RSJ) from Guo, Wang, and
Zhou (2019); value-weighted average skewness (SKEWyw) and equal-weighted
average skewness (SKEWgy) from Jondeau et al. (2019); and left-jump probability

“The results for 3-, 6-, 9-, 24-month horizons as well as for the joint regression of PVRP and M4RP
are qualitatively similar. The results are available from the authors.
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